

PyReconstruct
A fully opensource, collaborative successor to Reconstruct.

Michael A. Chirillo*, Julian N. Falco*, Michael D. Musslewhite, Larry F. Lindsey, Kristen M. Harris

Center for Learning and Memory, The University of Texas at Austin, Austin, Texas 78712

*These authors contributed equally to this work.

Abstract

As the serial section community transitions to volume electron microscopy, tools are needed to balance rapid

segmentation efforts with documenting the fine detail of structures that support cell function. New annotation

applications should be accessible to users and meet the needs of the neuroscience and connectomics

communities while also being useful across other disciplines. Issues not currently addressed by a single,

modern annotation application include: 1) built-in curation systems with utilities for expert intervention to

provide quality assurance, 2) integrated alignment features that allow for image registration on-the-fly as image

flaws are discovered during annotation, 3) simplicity for non-specialists within and beyond the neuroscience

community, 5) a system to store experimental meta-data with annotation data in a way that researchers remain

masked regarding condition to avoid potential biases, 6) local management of large datasets, 7) fully open-

source codebase allowing development of new tools, and more. Here, we present PyReconstruct, a modern

successor to the Reconstruct annotation tool. PyReconstruct operates in a field-agnostic manner, runs on all

major operating systems, breaks through legacy RAM limitations, features an intuitive and collaborative

curation system, and employs a flexible and dynamic approach to image registration. It can be used to analyze,

display, and publish experimental or connectomics data. PyReconstruct is suited for generating ground truth to

implement in automated segmentation, outcomes of which can be returned to PyReconstruct for proofreading

and quality control.

Significance statement

In neuroscience, the emerging field of connectomics has produced annotation tools for reconstruction that

prioritize circuit connectivity across microns to centimeters and farther. Determining the strength of synapses

forming the connections is crucial to understand function and requires quantification of their nanoscale

dimensions and subcellular composition. PyReconstruct, successor to the early annotation tool Reconstruct,

meets these requirements for synapses and other structures well beyond neuroscience. PyReconstruct lifts

many restrictions of legacy Reconstruct and offers a user-friendly interface, integrated curation, dynamic

alignment, nanoscale quantification, 3D visualization, and more. Extensive compatibility with third-party

software provides access to the expanding tools from the connectomics and imaging communities.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction

Reconstruct was released more than 20 years ago as one of the first open-source image annotation

applications that could be run on a personal computer (1–3), also cite SynapseWeb download cite here. It

offers a robust set of annotation features that are user-defined and field-agnostic. Since its release, additional

annotation applications have followed, many written with connectomics-level analyses in mind (4–12). These

modern applications have prioritized features that allow for rapid imaging and long-range segmentation of cell

membranes to identify circuit connectivity (13–16). However, features needed for the more detailed annotation

and curation of synapses and subcellular features in the context of circuit-level analyses are downplayed.

Despite the many compelling features offered by the alternatives, Reconstruct continues to be used by a large

and diverse group of researchers from a variety of fields. Reconstruct has been used to produce data in

hundreds of publications ranging from neuroscience (17–23) to plant biology (24, 25), entomology (26–28),

human anatomy (29), herpetology (30), and materials science (31), to name a few. We attribute its widespread

use in part to Reconstruct’s simple interface and flexible approach to annotation. Image stacks are imported

into the application, and with little effort, researchers can quickly begin annotating serial sections, export data

for analysis, and produce publication-quality 3D visualizations, all in a single intuitive application.

Despite significant advances in EM annotation tools, several fundamental challenges persist. Many require

considerable programming expertise to access full annotation details and advanced features. This requirement

limits accessibility to technical specialists rather than serving the broader research community. Most annotation

tools lack robust, integrated systems for quality control and data curation. Many do not accommodate post-hoc

realignment of serial sections, making it difficult to correct alignment errors discovered during annotation or

analysis. Finally, most tools separate meta-data from image data, forcing researchers to maintain parallel data

management systems and complicating long-term data preservation. These limitations can significantly impede

annotation workflows and compromise data integrity, particularly in large-scale projects.

Reconstruct has long been overdue for a major overhaul. It only ran natively on Windows machines, datasets

were RAM-restricted in size, a complex system of transformations hampered new alignment strategies, and

minimal interaction with outside tools restricted its expansion. Limitations like these required users to

implement kludgy workarounds that complicated their workflows. Despite these limitations, Reconstruct

continues to be used for its simplicity and efficiency.

With these limitations in mind, we have produced a generalizable and streamlined annotation tool in the spirit

of Reconstruct that integrates readily into any serial imaging pipeline (Fig. 1). We have named this new system

PyReconstruct, a modern, user-friendly successor to what we now refer to as “legacy” Reconstruct.

PyReconstruct was written in Python, retaining legacy Reconstruct’s intuitive interface and addressing the

shortcomings necessary to transition from serial section to the volume electron microscopy needed for circuit

analyses. It features an integrated curation system for maintaining data quality, flexible alignment capabilities,

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

and unified data storage keeping meta-data and image data together. PyReconstruct runs on most operating

systems, employs lightweight data structures, implements dynamic alignment, and provides multi-resolution

scaling. It lifts RAM restrictions allowing users to scale up to large volumes. PyReconstruct is also backward

compatible with data annotated in legacy Reconstruct, giving legacy users the ability to port their data into the

modern annotation environment. Importantly, PyReconstruct is fully opensource and users are at liberty to

customize the source code to their own use cases.

User experience

We designed the core functionalities and features of PyReconstruct to facilitate working with serial images in

an unopinionated manner, to maintain data integrity, and to promote a collaborative workflow. In the sections

below, we describe the annotation and segmentation interface, object organization capabilities, curation tools,

alignment systems, and data visualization features.

Segmentation and object organization

PyReconstruct offers an uncomplicated graphical interface for registration, segmentation, and meshing of

image data and allows for multiple points of entry and exit to and from third-party software (Fig. 2). By

leveraging Python wrappers for openCV (4.8.1), stacks of serial 2D images can be loaded into PyReconstruct

in multiple formats (.tiff, .jpeg, .png, etc.). Though PyReconstruct directly imports standard images without

conversion, users can also benefit from its support of precomputed volume formats, the advantages of which

are outlined below.

The user’s primary workspace contains a single image from the series (the “section”) displayed in the main

window (Fig. 3A). The trace palette, tool bar, section navigator, and brightness/contrast sliders are

superimposed over the image and are moveable around the field, such that the user can personalize their

workspace as they annotate. Detachable windows display quantitative 2D (the trace list) and 3D annotation

data (the object list) as it is being collected in the main window (Fig. 3B). Users are at liberty to choose trace

name, color, tag, and appearance. The trace list allows users to view and edit traces on a section and see

quantitative measurements, while the object list allows users to view and edit object data and see quantitative

measurements in 3D based on the calibrated section thickness (2).

In PyReconstruct, 3D “objects” represent collections of 2D “contours” over the image stack that belong to a

single feature in the series. An object’s contour on a single section may consist of one or several separate

“traces” (Fig. 4A). Segmentation data in PyReconstruct is stored as lists of x and y positions that make up

individual traces, and objects can be organized and classified in a number of ways. Hierarchical and nested

objects groups can be created by assigning “hosts” that point to other objects. For example, “synapse” may

point to “dendrite” and/or “axon”. Users can also create custom categories to assign objects qualitative

measures. For example, “synapse” from the above example could also be categorized by “synapse type” as

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

“excitatory” or “inhibitory”. For cases that fall outside host-inhabitant relationships and categorical variables,

users can create simple, custom-named groups. Because these classification schemes are customizable,

users can define semantically meaningful groups and relationships that are specific to their use-cases.

Rich, free-form annotations and event tracking

PyReconstruct allows for rich annotations that might otherwise be stored externally and risk being separated

from the original series. Annotations that provide meta-data and context to series features can be applied to

individual traces (tags), entire objects (groups and comments), and points of interest in the field (flags) (Fig.

4B-C). For example, traces denoting object profiles distorted by image artifacts might be tagged to indicate

they have been interpolated (or inferred by the user) from traces on adjacent intact sections. Users may flag

objects in a series that serve as probands or objects the annotator wishes to revisit later. Objects can be

grouped to track their use in specific publications or projects, while comments provide additional explanatory

notes. Free-form annotations like these enable users to create and customize their own annotation system

based on project needs.

Experimentalists often revisit previously annotated series to test new hypotheses, and keeping track of the

history of actions performed in a series may serve to guide subsequent annotation. In the past, this information

was stored externally. PyReconstruct provides automation by logging all actions that add new or modify

existing annotation data logged. Log entries contain brief descriptions of annotation events, including date,

time, user, objects edited, and the section or sections on which the action was performed. Users can view and

filter the full log to display entries relevant to one or more objects.

Collaborative curation for quality control

Annotating large amounts of serial section data is generally performed among teams of annotators and

PyReconstruct was developed with this approach in mind. Annotations performed by a team member are

subsequently passed to a more expert annotator to be proofread and curated for quality assurance (Fig. 5). To

this end, PyReconstruct includes a simple curation system, and users can be assigned curation tasks through

the object list (Fig. 6A). Curation history (user, date assigned, completion status, etc.) is tracked with the series,

so that project leads can verify if annotation criteria is applied uniformly among team members and correct

tracing errors. Curation data and history is readily available and displayed through the object list. Free-form

annotations (see Fig. 4B-C) provide further context to aid collaboration among annotation teams. Field flags

also include a running commentary that can be used to alert present and future annotators to information about

locations in the series (Fig. 6B). Flag meta-data including the creation time, username, and related notes are

tracked and stored with series data. A conversation-style comment system allows users to maintain a running

discussion for each flagged item. Tags applied to traces on a particular section can be accessed in a trace list

(Fig. 6C), which when filtered and sorted, provides a rapid means to identify the status of a trace.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

PyReconstruct runs on a local machine and does not currently implement a client-server solution to allow

multiple users to work simultaneously on a single series. Trace conflicts might therefore arise when series

annotated simultaneously by different users are subsequently merged. For example, two annotators tracing the

same object will lead to non-identical, overlapping traces representing the same feature on a section. Merging

large, heavily annotated series can result in many duplicate traces that pollute the workspace and lead to

quantification errors.

To deal with this problem, a trace import system has been implemented in PyReconstruct that identifies and

alerts users to merge conflicts that must be resolved. Conflicting traces are determined based on the Jaccard

similarity coefficient, trace history, and annotator preference. Users can determine an overlap threshold above

which traces are considered “identical enough”, which gives PyReconstruct leeway to discard all but one

overlapping trace. This provides some automation to the tedious tasks of curating multiple traces for a single

feature. Remaining conflicts are flagged for resolution, and users can walk through each conflict systematically.

Dynamic alignments applied on demand

During processing, sectioning, and imaging, planar specimens are subjected to a variety of physical alterations

(e.g., compression, shrinkage, heating) and technical complications (e.g., stage and specimen drift, and non-

uniform scan and lens characteristics) that introduce linear and non-linear distortion into the final images (37–

39). Image distortion can be mitigated through choice of processing protocol (40–43), imaging modality (44,

45), and post-hoc computational processing, but in many cases must ultimately be corrected through image

registration. Registration methods are rapidly improving (46–57), and choice in strategy depends on distortion

type and personal preference. We therefore sought to implement a flexible and dynamic registration strategy to

allow users 1) to import alignments generated externally, 2) to perform simple registration inside

PyReconstruct, and 3) to store multiple alignments that can be applied to stacks of images on the fly (Fig. 7).

An “alignment” in PyReconstruct is represented by a list of affine transformations (Fig. 7A). Each section in the

series is associated with a single affine transformation, which is stored as a set of six numbers that correspond

to the first two rows of the 2D transformation matrix. This single transformation is applied to both image pixels

and contour data of a particular section, which are then displayed in the field when the section is called by the

user. In this way, users whose images require affine transformations alone need not work with images whose

alignments have been previously “baked in” (i.e., transformations applied directly to stored images).

This strategy offers several advantages. First, the only image data stored with a project are the unaligned

images that were initially produced at the microscope and imported into PyReconstruct, dramatically reducing

the size of a project. (Users can still of course use third-party software like Fiji, TrakEM2, and SWiFT-IR to

import images with baked-in alignments and perform additional local alignments.) Second, stored contour

points reflect the x and y position of the points on the unaligned images (not the transformed images), making

it possible for users to apply external transformations to those points when exporting contour data from

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

PyReconstruct. Third, users can rapidly tweak a section’s alignment should they note alignment flaws while

annotating, which is a common occurrence when working with serial images.

Finally, the simplicity of this strategy means users are at liberty to store multiple alignment profiles specific to

an object, region of interest, or context, which can be applied to the series on demand (Fig. 7B). This is

especially useful when annotating objects in areas of section deformation, for example, on either side of image

artifacts (breaks, folds, tears, etc.), which are frequent in serial section EM. These artifacts would otherwise

require users to use third-party image editing software to correct. Thus, a complete history of alignments for

each series is stored. Objects in the series can be assigned to specific alignments, ensuring the object’s

quantitative measurements and 3D reconstructions are accurate.

PyReconstruct supports simple manual alignment natively and users can interactively translate, rotate, scale,

and shear images in the main window. Users can also directly edit a section’s affine transformation through the

menu bar (Fig. 7C). Affine transformations can be estimated by identifying fiducial markers in the field, such as

cell structures that span multiple sections. Transformations performed on single sections can be applied

throughout the remaining sections, allowing for a correction in alignment to be propagated throughout the

series. PyReconstruct supports importing alignments from other PyReconstruct projects as well as from

external applications, for example, directly from SWiFT-IR project files (33, 56) or in the form of simple .txt files,

each line representing an affine transformation.

Data visualization and analysis

PyReconstruct’s object list represents a serialized view of objects, their measurements, and meta-data, and

allows users to export data for analysis and render objects in 3D (Fig. 8). 2D contours are voxelized and

represented as NumPy arrays, which are translated through a matrix-to-marching-cubes algorithm provided by

the trimesh library (58) to generate watertight triangle meshes for visualization and quantification (Fig. 9A). The

trimesh library provides a number of in-place smoothing filters (59, 60) that can be applied to meshes in

PyReconstruct. 3D meshes are visualized in a customized 3D scene built on top of the Python scientific

visualization library vedo (61). The meshing strategies employed natively in PyReconstruct are modularized,

such that users proficient in Python can implement more complex meshing algorithms accessible from the user

interface should they choose to do so. 3D meshes can be exported from the object list in several formats (obj,

ply, stl, etc.), which can be imported into external 3D modeling software, such as Blender, for further editing.

Segmentation issues are often not apparent when viewing objects as 2D profiles. Misalignments, poor

segmentation, and misplaced traces become more evident when objects are rendered in 3D, and annotation

quality is improved when users switch between 2D and 3D views while working. PyReconstruct’s 3D scene

includes several features to facilitate these actions. Double-clicking on a point in the 3D scene focuses on that

point in the main window, providing a rapid way to identify 2D locations from the 3D space (Fig. 9B). Objects

rendered in the 3D scene can be translated and rotated, allowing the user to customize the 3D view, for

example, to visualize all objects of interest in a single glance (Fig. 9C). Objects from other series can also be

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

imported into the current 3D scene. Customized 3D views can be saved as “scenes” that store object attribute

and location information, which can be opened across annotation sessions. Scenes, in addition to aiding users

in annotation, mitigate the need to export meshes to external 3D modeling software when making simple

figures for publications.

Under the hood

Interface framework, data structures, and legacy compatibility

PyReconstruct’s user interface is powered by Python bindings for Qt6, an opensource and platform-

independent framework for developing graphical user interfaces (62). Users can therefore run PyReconstruct

on most major modern operating systems (Windows, macOS, and many Linux distros) right out of the box.

Annotation data in legacy Reconstruct was stored over multiple “trace files”, one for each section, making

moving series data between computers and users cumbersome and prone to data loss. Storing annotation

data in a single, locally stored file facilitates data sharing amongst users. Annotation data in PyReconstruct is

collected and stored in a single JSON-structured file with the extension .jser (portmanteau of “JSON” and

“series”, pronounced “jay-sir”, Fig. 10). Image data are stored separately in a format and location defined by

the user.

The jser file is divided into data pertaining to individual sections (section-specific data) and data pertaining to

the entire series (series-specific data). Section-specific data contain contour information and annotations,

transformations, and the section’s image attributes (magnification, brightness, contrast, and image file pointer).

Series-specific data store information that spans multiple sections, including, for example, series meta-data,

object attributes, current alignment, user information, and user preferences. All annotation data is accessible

graphically through the application and through PyReconstruct’s Python API.

PyReconstruct implements a composite file pattern approach when loading and saving data: Data stored in the

single jser file is decomposed at startup into discrete temporary hidden files that hold information pertaining to

individual sections and the series. This approach optimizes RAM utilization while processing contour data and

provides fault tolerance should the program unexpectedly close, or the user’s system fails.

Labs from a variety of fields continue to employ legacy Reconstruct as the primary tool used to annotate serial

section EM data manually due in part to its ease of use. We therefore sought to make porting data from legacy

Reconstruct into PyReconstruct simple. PyReconstruct is backward compatible with legacy structures: Series

that were previously annotated in Reconstruct and saved as XML can be loaded into PyReconstruct by simply

pointing to the legacy structures. No external conversion is necessary. Importantly, this process is bidirectional:

Annotation data collected in PyReconstruct can also be exported as legacy XML structures in case users have

established workflows that rely on legacy structures remaining intact, for example, with neuropil tools (36).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

Features only compatible with PyReconstruct are saved in the jser file. Users therefore retain full access to the

legacy application should they choose to do so and can still benefit from PyReconstruct’s modern annotation

features.

Lifting RAM restrictions through multi-resolution scaling

Datasets loaded in legacy Reconstruct could exceed RAM; however, two sections were loaded into memory

simultaneously. This meant large images needed to be cropped to a size compatible with the user’s RAM

specs. Modern, ultra-large data viewers typically solve this issue by employing data structures that store

chunked, compressed N-dimensional arrays at multiple resolution (or “scales”), such as with HDF5 or Zarr.

Precomputed image datasets can be manipulated through a variety of wrappers such as h5py (63), PyTables

(64), Z5 (65), and zarr-python (66). Instead of mapping entire images from disk into RAM, moving compressed

chunks of data dramatically reduces loading times and makes navigating serial sections a much quicker and

more pleasant experience. Saving the image data at multiple resolutions further reduces the amount of data

loaded when users view low magnification views of a section.

To lift legacy Reconstruct’s RAM restrictions, we have implemented a multi-resolution Zarr approach to loading

and viewing image data in PyReconstruct. Zarr was chosen as it was designed specifically for Python,

supports robust multi-threading, provides access to customizable compressor and filter classes, and is used

extensively in machine-assisted segmentation. Unlike applications that consolidate serial sections into a

volumetric, 3D Zarr, PyReconstruct implements a 2D layer approach: each section being stored as a separate

annotated group, which allows users to switch between the original images and Zarr at will.

Storing and retrieving image data in a chunk-wise manner means PyReconstruct users are in practice no

longer RAM-limited when annotating series. Users are now virtually unbounded by series size, restricted only

by the disk space available on their local machines, which can be augmented with external and remote storage.

This strategy permits near-instantaneous loading of images in the field, as only chunks at the lowest possible

resolution based on zoom are loaded during viewing. PyReconstruct maintains its flexible alignment strategy

by applying affine transformations non-destructively, only after image data is loaded. A multi-resolution Zarr

approach does increase the overall size of data stored per project, but PyReconstruct’s scaling strategy means

Zarr datasets are never heavier than 1.33 times the size of the original image stack.

Interacting with external large-image applications and datasets

Volumetric datasets are much larger than they used to be, even recently (67–72). This is due in part to the

transition from volumes constructed from small-field TEM images to those from high-throughput methods such

as focused ion beam SEM (73, 74), serial block face SEM (75, 76), and tape and array methods (77–80).

Relying on manual segmentation alone is therefore increasingly unfeasible. However, many labs (including our

own) continue to employ manual segmentation as a primary technique. We therefore sought to provide a

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

simple platform that annotators can use to begin to interact with the many automated segmentation tools being

developed by the connectomics community.

Neuroglancer is a WebGL-based application for viewing, annotating, and querying large, multi-resolution

volumetric data (81) and is the application of choice in several connectomics projects. Porting data to and from

Neuroglancer offers one path through which automated segmentation efforts can be tapped into.

PyReconstruct provides a graphical interface where users can export image data and contours as labeled

Zarrs compatible with Neuroglancer. Data annotated in Neuroglancer can also be imported and converted to

contour data for use in PyReconstruct.

Discussion

PyReconstruct provides solutions that enhance manual segmentation of serial images in a user-friendly and

familiar interface and offers several advantages over legacy Reconstruct. The target audience includes

researchers from a variety of largely unrelated fields, who rely on manual annotating serial sections and

volume EM data. Thus, PyReconsruct is a non-specialized tool that offers platform-independence, simplified

data structures, a unique alignment strategy, and functionality to interact with a variety of external tools.

Integrated data quality control is often overlooked in annotation software, requiring users to develop their own

external tracking systems. PyReconstruct has a robust and built-in curation system that addresses this critical

gap. By embedding curation data directly within project files, PyReconstruct provides a streamed approach to

team coordination and data integrity. PyReconstruct is fully opensource under a GNU General Public License

v3 and users are encouraged to scrutinize and improve its source code, which is publicly available at GitHub

(https://github.com/synapseweb/pyreconstruct). Opensource tools like PyReconstruct empower users to create

custom solutions that can be integrated into the main product to the benefit the broader scientific community.

This open environment also makes it possible to develop data conversion strategies that will allow

PyReconstruct to accept annotations and segmentations from other systems.

As our understanding of alignment evolves, image registration strategies are advancing (46–57). The ability to

re-align a series means users can adapt and refine their work at all stages, rather than being constrained to a

single baked-in alignment. Image flaws resulting in alignment errors are often not noticed until the annotation

stage, when users are viewing sections at higher magnifications. The ability to tweak existing alignments

rapidly and create new alignments when required therefore facilitates annotation and improves the quality of

the 3D outcomes. In PyReconstruct, users are at liberty to align the series, import alignments from external

software, and store multiple alignments that can be switched to and from on demand. Importantly, this strategy

enables users to employ simple, non-elastic alignments in series that suffer from image artifacts that warp

portions of a section (see Fig. 7). Multiple alignment stacks for a single series and the ability to realign on

demand also provides ground truth for developing more sophisticated automatic alignment methods.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

Simplicity and generalizability come with tradeoffs. Fully segmenting, annotating, and curating EM volumes is

time-consuming. For example, the complete manual annotation of a single, roughly 180 μm3 volume of

hippocampal tissue—an exceedingly small volume by today’s connectomics standards—took a team of expert

annotators more than a year to complete and curate using legacy Reconstruct (82). The process of scaling up

is therefore impractical (if not impossible) when annotators rely on manual segmentation alone. The push by

many teams to produce semi- and fully automated segmentation pipelines has led to the segmentation of

breathtakingly large datasets (67–69, 71). Nevertheless, these pipelines remain largely relegated to specialist

communities. Therefore, a need remains to adopt automated segmentation approaches in simple user

interfaces for non-specialist users.

One key challenge in adopting automated segmentation routines lies in balancing technical sophistication with

accessibility. Modern automated segmentation tools require computational infrastructure and expertise in

programming. The benefits of expanding access to these tools are immense. Moving forward, the developers

of PyReconstruct are evolving its API and plugin framework to support the embedding of customized

automated segmentation features into the software. This modular approach will enable researchers to leverage

cutting-edge routines without the need for deep technical expertise, bridging the gap between specialist and

non-specialist communities.

The evolution of imaging modalities over the past several decades has led to microscopy datasets that are

larger than they have ever been (67–72, 83). These massive datasets have predominantly required server-

based storage. Annotation tools that have grown up around these projects have therefore prioritized this

approach (4, 9, 10). At present, PyReconstruct is a fully standalone application without server-client

dependencies. Its users are not dependent on an internet connection, server maintenance, or remote data

stores. While this approach offers simplicity and autonomy, users may need to generate manageable

subvolumes from their data, especially when working with extremely large datasets.

Previously, researchers faced the onerous task of manually cropping individual serial images. Today, the

widespread adoption of chunk-wise data storage formats and the increasing availability of standardized, open-

source databases for large image data (84–88) have significantly mitigated these limitations. Users can

efficiently extract subvolumes from remotely stored datasets through Python libraries like CloudVolume, which

offer APIs to access precomputed volumes (89). These tools can be readily integrated into a workflow to

sample regions from larger volumes and use the suite of annotation, curation, quantification, and visualization

features to produce high quality data output from PyReconstruct.

Funding

This work was supported by NIH Grants 1R56MH139176-01 and NSF Grants 1707356, 2014862, and

2219894 to K.M.H.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

Acknowledgements

We would like to thank Harris lab members, GitHub users, members of our regular PyReconstruct user

meetings, and students in NEU466G at the University of Texas at Austin for beta testing PyReconstruct and for

their suggestions. Their input was vital in shaping the interface. We also would like to thank James Carson at

the Texas Advanced Computing Center (TACC) for his help in integrating PyReconstruct with TACC’s online

access points and Vijay Venu Thiyagarajan for his suggestions regarding data structures.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

Experimentation

Processing

exp_001

Imaging

Registration

Segmentation

den_001

den_002

Meshing

Analysis

PyReconstruct

Other Serial

Imaging
Pipelines

Figure 1. Example serial imaging pipeline from

experimentation through data analysis.

PyReconstruct encompasses the most time-

consuming steps (green box) in pipelines that rely on

manual segmentation or proof reading of serial images

to produce analyzable data. Here, a serial section EM

pipeline is shown. Image registration, segmentation,

and contour meshing can be performed in a single

application. Images from any source can be used in

this pipeline, including series or single sections.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

Registration

Meshing

...

External Formats + Tools Manual

1
2

3
31

2

TrakEM2 AlignEM-
SWiFT

Zarr

...

3D Publication Quantitative
Output

External Tools

...

Segmentation

Annotation

Curation

Segmentation

Figure 2. PyReconstruct readily interacts with

third-party software. Core PyReconstruct

functions are highlighted in green and include

native manual registration through the application

interface, while also supporting importation of pre-

registered images and transformation matrices (6,

32, 33). PyReconstruct stores detailed

segmentation data as 2D contours and features a

checklist-based curation system for quality

assurance. Users can generate, view, and export

quantitative data and meshes directly in

PyReconstruct to create publication-ready figures

or for use externally in programming languages

such as Python and R. Exported meshes can be

further edited in advanced 3D platforms like

Blender for biophysical modeling using programs

like CellBlender and Mcell (34-36).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

Menu
Bar

Brightness
Contrast

Section
Nav

Trace
Palette

Status
Bar

Tool
Bar

3D Scene

Trace List

Object ListA B

Figure 3. Windowing schema in PyReconstruct. (A) The

main window contains images and widgets (tools, trace

palette, etc.) that can be moved around the frame and toggled

on and off, allowing users to customize their primary

workspace. (B) Users interact with 2D and 3D data as it is

being collected through ancillary, detachable windows, such as

the trace list, object list, and 3D scene.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

1

2

3

Object

Trace

Trace
Contour3

Contour2

Contour1

A

B

obj_1

obj_2

obj_3

Object
group 1

Object
group 2

Object
comment

Object
comment

C

!

Trace
tag

Field
flag !

Trace
tag

!

!
!

!

!

Figure 4. PyReconstruct stores both free-form and

hierarchically organized annotation data. (A) Object profiles on

individual sections are identified and their outlines traced by

annotators. An object’s 2D contour consists of all traces on a

section belonging to the object. 3D objects are constructed from

multiple contours across serial images. (B) A trace tagging system

allows users to ascribe additional information concerning 2D

segmentations. (C) Annotations applied to objects include groups

and comments, which can be accessed from the object list.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

Annotated series

Annotator(s)

Curator(s) Team Lead

approves corrects rejects + tags trace addresses question

Un-annotated series

Team Lead

incorrect!

? Trace SER?

? Trace SER?

! Please!

!

?

merges into

appropriate mistake poses question

AnnotatorCurator

AnnotatorCurator

AnnotatorCurator

Team
Lead

assigns

Figure 5. Implementation of a team-based annotation and curation scheme to ensure quality control. A

team lead (blue) assigns annotation (green) and curation tasks (pink) to team members working

simultaneously on copies of a single series. Curators approve, correct, or reject traces, which can be tagged

for review. Annotators can pose questions to team leaders through a system of flags with commentary that

can be answered and returned. As annotations are curated, the partially annotated series can be passed back

to the team lead. Curated series are merged into a single annotated dataset for analysis. PyReconstruct

provides features at multiple steps in this pathway to facilitate curation and quality control.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

B

C

Figure 6. PyReconstruct provides automation

for curating segmentation data. (A) Tracking of

curation tasks is stored with series data in

PyReconstruct. Curation tasks and status can be

assigned interactively to objects from the object

list. Multiple filtering options allow users to view

pending and completed curation tasks assigned to

them and to others. Here, users were randomized

to curation tasks through PyReconstruct’s Python

API. (B) Flags placed in the field are shown in a

flag list, which can be sorted in various ways.

Running commentary allows team members to

pose questions and discuss issues that arise

during annotation. (C) Traces can be tagged with

information that is accessed from a sortable trace

list.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

[T]

A

B

C

image
artifact

Alignment Profiles

[T]

[T]
...

[T]

[T]
...

[T]

[T]
...

Original

alignment none

alignment red

alignment blue

Displayed

C

[T]

Figure 7. Multiple alignment profiles applied to

serial sections on demand. (A) PyReconstruct

stores image and contour data in their

untransformed state. Alignments are represented as

lists of affine transformations ([T]), one for each

section. Multiple alignments are stored as profiles

that can be applied independently on demand.

Image artifacts (resulting from tears, folds, etc. in

serial sections) often warp serial sections and

produce local misalignments. The ability to tweak,

create, and store multiple alignments facilitates

annotation. (B) Alignment profiles can be accessed

and modified through the user interface. The current

alignment is displayed by name in the main

window’s status bar (bottom of main window, see

Fig. 3A). (C) New alignments can be created in

PyReconstruct and imported from external

applications or section transformations can be

edited directly in the interface, allowing users fine

control over series alignments.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

Define categorical
variables and values

Filter by built-in and
custom filters

Define hierarchical
schema amongst

objects

Define and assign
custom groups

A

B

C

D

Figure 8. Three-dimensional data is stored in the object list.

Data concerning 3D objects constructed from 2D contours is

displayed in the object list. Users can sort by built-in and custom

filters (A), define categorical variables and assign values (B),

define and assign custom groups (C), and define hierarchical

schema amongst objects by assigning objects as hosts (D).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

B

A

B

C

Figure 9. An enhanced 3D scene facilitates

detailed curation and stores publication-ready

visualizations. (A) 3D renderings of objects can

be generated from the object list and are

displayed in a featureful 3D scene. (B) Double-

clicking in the 3D scene focuses on the

corresponding 2D location in the main window,

allowing users to navigate to sections for curation.

Here, a disconnected part of an object identified in

the 3D scene is rapidly uncovered on the 2D

section, allowing users to curate more finely the

object’s segmentations. (C) The updated 3D

scene offers users features that organize objects

in an automated fashion. Here, all objects in the

3D scene have been organized along a single

axis, providing a visual overview of all meshes.

Objects can be moved and rotated interactively

and their attributes (color, opacity, etc.) can be

altered. Scenes can be exported, saved, and re-

loaded at a later time, allowing users to produce

publication-ready figures and store scenes with

series data.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

Profile ...Profile

Series

SectionsJSER Section0 Section1

Contours Flags Tforms BC

Contour Contour ...

Trace0 Trace1
...

Color Points Hidden

Closed Tags

Align name ...Align name

...

Thick Mag Img

Z traces Align Code Editors Img Dir Section

Z name Z name ...

Color Points

Log

ValueArray/ListObject/Dictionary

Flag0

Name Color Position

Comments Status

Flag1
...

Figure 10. Schematic of PyReconstruct annotation data. Whereas legacy Reconstruct stored

annotation data as multiple, non-canonical XML files, PyReconstruct stores annotation data locally as

a single JSON-structured file (suffixed with .jser) loaded as a Python dictionary and edited using built-

in modules or through PyReconstruct’s API. Series-wide data is held in a “Series” key, section data in

a “Section key”, and series history in a “Log” key. The top-level key “Sections” maps to a list of section

dictionaries with keys representing contour, flag, transformation data, etc. “Contours” is associated

with a list of contours, which hold trace information. Traces are lists of trace attributes, such as trace

color, points, visibility, etc. (Abbreviations: Align alignment, Code series code, Img Dir image directory,

Tforms transforms, BC brightness/contrast profiles, Thick thickness, Mag pixel magnification, Img

image file path.)

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

References

1. J. C. Fiala, Reconstruct: A free editor for serial section microscopy. J microsc 218, 52–61 (2005).

2. J. C. Fiala, K. M. Harris, Extending Unbiased Stereology of Brain Ultrastructure to Three-dimensional

Volumes. Journal of the american medical informatics association 8, 1–16 (2001).

3. Harris Lab, SynapseWeb Software. (2025). Available at: https://synapseweb.clm.utexas.edu/software

[Accessed 11 March 2025].

4. S. Saalfeld, A. Cardona, V. Hartenstein, P. Tomančák, CATMAID: Collaborative annotation toolkit for

massive amounts of image data. Bioinformatics 25, 1984–1986 (2009).

5. C. Sommer, C. Straehle, U. Köthe, F. A. Hamprecht, Ilastik: Interactive learning and segmentation toolkit in

2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, (2011), pp. 230–233.

6. A. Cardona, et al., TrakEM2 Software for Neural Circuit Reconstruction. Plos one 7, e38011 (2012).

7. C. M. Schneider-Mizell, et al., Quantitative neuroanatomy for connectomics in Drosophila. Elife 5, e12059

(2016).

8. P. A. Yushkevich, Y. Gao, G. Gerig, ITK-SNAP: An interactive tool for semi-automatic segmentation of multi-

modality biomedical images. Conf proc ieee eng med biol soc 2016, 3342–3345 (2016).

9. K. M. Boergens, et al., webKnossos: Efficient online 3D data annotation for connectomics. Nat methods 14,

691–694 (2017).

10. D. R. Berger, H. S. Seung, J. W. Lichtman, VAST (Volume Annotation and Segmentation Tool): Efficient

Manual and Semi-Automatic Labeling of Large 3D Image Stacks. Frontiers in neural circuits 12 (2018).

11. P. Hanslovsky, et al., Paintera. Zenodo. https://doi.org/10.5281/zenodo.14454929. Deposited December

2024.

12. N. Sofroniew, et al., Napari: A multi-dimensional image viewer for Python. Zenodo.

https://doi.org/10.5281/zenodo.14719463. Deposited 22 January 2025.

13. K. L. Briggman, D. D. Bock, Volume electron microscopy for neuronal circuit reconstruction. Current

opinion in neurobiology 22, 154–161 (2012).

14. J. Kornfeld, W. Denk, Progress and remaining challenges in high-throughput volume electron microscopy.

Current opinion in neurobiology 50, 261–267 (2018).

15. C. S. Xu, S. Pang, K. J. Hayworth, H. F. Hess, “Transforming FIB-SEM Systems for Large-Volume

Connectomics and Cell Biology” in Volume Microscopy, (Humana, New York, NY, 2020), pp. 221–243.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1111/j.1365-2818.2005.01466.x
https://doi.org/10.1136/jamia.2001.0080001
https://doi.org/10.1136/jamia.2001.0080001
https://synapseweb.clm.utexas.edu/software
https://doi.org/10.1093/bioinformatics/btp266
https://doi.org/10.1093/bioinformatics/btp266
https://doi.org/10.1109/ISBI.2011.5872394
https://doi.org/10.1371/journal.pone.0038011
https://doi.org/10.7554/eLife.12059
https://doi.org/10.1109/EMBC.2016.7591443
https://doi.org/10.1109/EMBC.2016.7591443
https://doi.org/10.1038/nmeth.4331
https://www.frontiersin.org/articles/10.3389/fncir.2018.00088
https://www.frontiersin.org/articles/10.3389/fncir.2018.00088
https://doi.org/10.5281/zenodo.14454929
https://doi.org/10.5281/zenodo.14719463
https://doi.org/10.1016/j.conb.2011.10.022
https://doi.org/10.1016/j.conb.2018.04.030
https://doi.org/10.1007/978-1-0716-0691-9_12
https://doi.org/10.1007/978-1-0716-0691-9_12
https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

16. C. J. Peddie, et al., Volume electron microscopy. Nat rev methods primers 2, 1–23 (2022).

17. R. W. Castro, M. C. Lopes, L. M. De Biase, G. Valdez, Aging spinal cord microglia become phenotypically

heterogeneous and preferentially target motor neurons and their synapses. Glia 72, 206–221 (2024).

18. D. Djama, et al., The type of inhibition provided by thalamic interneurons alters the input selectivity of

thalamocortical neurons. Curr res neurobiol 6, 100130 (2024).

19. K. Haruwaka, et al., Microglia enhance post-anesthesia neuronal activity by shielding inhibitory synapses.

Nat neurosci 27, 449–461 (2024).

20. D. Holl, et al., Distinct origin and region-dependent contribution of stromal fibroblasts to fibrosis following

traumatic injury in mice. Nat neurosci 27, 1285–1298 (2024).

21. M. K. P. Joyce, J. Wang, H. Barbas, Subgenual and Hippocampal Pathways in Amygdala Are Set to

Balance Affect and Context Processing. J. neurosci. 43, 3061–3080 (2023).

22. Y. M. Morozov, P. Rakic, Disorder of Golgi Apparatus Precedes Anoxia-Induced Pathology of Mitochondria.

International journal of molecular sciences 24, 4432 (2023).

23. M. Ziółkowska, et al., Phosphorylation of PSD-95 at serine 73 in dCA1 is required for extinction of

contextual fear. Plos biology 21, e3002106 (2023).

24. S. Amemiya, et al., Early stalked stages in ontogeny of the living isocrinid sea lily Metacrinus rotundus.

Acta zoologica 97, 102–116 (2016).

25. J. L. Parke, et al., Phytophthora ramorum Colonizes Tanoak Xylem and Is Associated with Reduced Stem

Water Transport. Phytopathology® 97, 1558–1567 (2007).

26. C. Groh, Z. Lu, I. A. Meinertzhagen, W. Rössler, Age-related plasticity in the synaptic ultrastructure of

neurons in the mushroom body calyx of the adult honeybee Apis mellifera. J comp neurol 520, 3509–3527

(2012).

27. M. A. Seid, E. Junge, Social isolation and brain development in the ant Camponotus floridanus. Sci nat 103,

1–6 (2016).

28. J. Stökl, G. Herzner, Morphology and ultrastructure of the allomone and sex-pheromone producing

mandibular gland of the parasitoid wasp Leptopilina Heterotoma (Hymenoptera: Figitidae). Arthropod

structure & development 45, 333–340 (2016).

29. M. Baumgart, et al., Morphometric study of the two fused primary ossification centers of the clavicle in the

human fetus. Surg radiol anat 38, 937–945 (2016).

30. B. C. Moore, K. Mathavan, L. J. Guillette, Morphology and histochemistry of juvenile male American

alligator (Alligator mississippiensis) phallus. Anat rec (hoboken) 295, 328–337 (2012).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1038/s43586-022-00131-9
https://doi.org/10.1002/glia.24470
https://doi.org/10.1002/glia.24470
https://doi.org/10.1016/j.crneur.2024.100130
https://doi.org/10.1016/j.crneur.2024.100130
https://doi.org/10.1038/s41593-023-01537-8
https://doi.org/10.1038/s41593-024-01678-4
https://doi.org/10.1038/s41593-024-01678-4
https://doi.org/10.1523/JNEUROSCI.2066-22.2023
https://doi.org/10.1523/JNEUROSCI.2066-22.2023
https://doi.org/10.3390/ijms24054432
https://doi.org/10.1371/journal.pbio.3002106
https://doi.org/10.1371/journal.pbio.3002106
https://doi.org/10.1111/azo.12109
https://doi.org/10.1094/PHYTO-97-12-1558
https://doi.org/10.1094/PHYTO-97-12-1558
https://doi.org/10.1002/cne.23102
https://doi.org/10.1002/cne.23102
https://doi.org/10.1007/s00114-016-1364-1
https://doi.org/10.1016/j.asd.2016.06.003
https://doi.org/10.1016/j.asd.2016.06.003
https://doi.org/10.1007/s00276-016-1640-y
https://doi.org/10.1007/s00276-016-1640-y
https://doi.org/10.1002/ar.21521
https://doi.org/10.1002/ar.21521
https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

31. C. M. Dinnis, A. K. Dahle, J. A. Taylor, Three-dimensional analysis of eutectic grains in hypoeutectic Al–Si

alloys. Materials science and engineering: A 392, 440–448 (2005).

32. J. Schindelin, et al., Fiji: An open-source platform for biological-image analysis. Nat methods 9, 676–682

(2012).

33. MCell Team, SWiFT-IR. GitHub. Deposited 2023.

34. J. Stiles, T. Bartol, “Monte Carlo methods for simulating realistic synaptic microphysiology using MCell” in

Computational Neuroscience: Realistic Modeling for Experimentalists, (CRC Press, 2001), pp. 87–127.

35. R. A. Kerr, et al., Fast Monte Carlo Simulation Methods for Biological Reaction-Diffusion Systems in

Solution and on Surfaces. Siam journal on scientific computing 30, 24 (2008).

36. MCell Team, CellBlender. GitHub. Deposited 2022.

37. T. Tasdizen, et al., Automatic mosaicking and volume assembly for high-throughput serial-section

transmission electron microscopy. Journal of neuroscience methods 193, 132–144 (2010).

38. K. J. Hayworth, et al., Ultrastructurally smooth thick partitioning and volume stitching for large-scale

connectomics. Nat methods 12, 319–322 (2015).

39. I. Lobato, T. Friedrich, S. Van Aert, Deep convolutional neural networks to restore single-shot electron

microscopy images. Npj comput mater 10, 1–19 (2024).

40. H. Hillman, K. Deutsch, Area changes in slices of rat brain during preparation for histology or electron

microscopy. Journal of microscopy 114, 77–84 (1978).

41. B. Cragg, Preservation of extracellular space during fixation of the brain for electron microscopy. Tissue

and cell 12, 63–72 (1980).

42. A. Schüz, G. Palm, Density of neurons and synapses in the cerebral cortex of the mouse. Journal of

comparative neurology 286, 442–455 (1989).

43. K. M. Harris, et al., Uniform Serial Sectioning for Transmission Electron Microscopy. J. neurosci. 26,

12101–12103 (2006).

44. M. Kuwajima, J. M. Mendenhall, L. F. Lindsey, K. M. Harris, Automated Transmission-Mode Scanning

Electron Microscopy (tSEM) for Large Volume Analysis at Nanoscale Resolution. Plos one 8, e59573

(2013).

45. M. Kuwajima, J. M. Mendenhall, K. M. Harris, Large-Volume Reconstruction of Brain Tissue from High-

Resolution Serial Section Images Acquired by SEM-Based Scanning Transmission Electron Microscopy.

Nanoimaging: Methods and protocols 253–273 (2013).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1016/j.msea.2004.10.037
https://doi.org/10.1016/j.msea.2004.10.037
https://doi.org/10.1038/nmeth.2019
https://github.com/mcellteam/swift-ir
https://doi.org/10.1137/070692017
https://doi.org/10.1137/070692017
https://github.com/mcellteam/cellblender
https://doi.org/10.1016/j.jneumeth.2010.08.001
https://doi.org/10.1016/j.jneumeth.2010.08.001
https://doi.org/10.1038/nmeth.3292
https://doi.org/10.1038/nmeth.3292
https://doi.org/10.1038/s41524-023-01188-0
https://doi.org/10.1038/s41524-023-01188-0
https://doi.org/10.1111/j.1365-2818.1978.tb00117.x
https://doi.org/10.1111/j.1365-2818.1978.tb00117.x
https://doi.org/10.1016/0040-8166(80)90052-X
https://doi.org/10.1002/cne.902860404
https://doi.org/10.1523/JNEUROSCI.3994-06.2006
https://doi.org/10.1371/journal.pone.0059573
https://doi.org/10.1371/journal.pone.0059573
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3716574
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3716574
https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

46. G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, A. V. Dalca, VoxelMorph: A Learning Framework for

Deformable Medical Image Registration. Ieee transactions on medical imaging 38, 1788–1800 (2019).

47. S. Hamzehei, et al., 3D Biological/Biomedical Image Registration with enhanced Feature Extraction and

Outlier Detection. Acm bcb 2023, 1 (2023).

48. A. Hoopes, M. Hoffmann, B. Fischl, J. Guttag, A. V. Dalca, HyperMorph: Amortized Hyperparameter

Learning for Image Registration in Information Processing in Medical Imaging, A. Feragen, S. Sommer, J.

Schnabel, M. Nielsen, Eds. (Springer International Publishing, 2021), pp. 3–17.

49. S. Klein, M. Staring, K. Murphy, M. A. Viergever, J. P. W. Pluim, Elastix: A Toolbox for Intensity-Based

Medical Image Registration. Ieee transactions on medical imaging 29, 196–205 (2010).

50. L. Liu, et al., Learning by Analogy: Reliable Supervision From Transformations for Unsupervised Optical

Flow Estimation in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

(2020), pp. 6488–6497.

51. E. Mitchell, S. Keselj, S. Popovych, D. Buniatyan, H. S. Seung, Siamese Encoding and Alignment by

Multiscale Learning with Self-Supervision. arXiv [Preprint] (2019). http://arxiv.org/abs/1904.02643

[Accessed 17 February 2025].

52. S. Popovych, et al., Petascale pipeline for precise alignment of images from serial section electron

microscopy. Nat commun 15, 289 (2024).

53. S. Preibisch, S. Saalfeld, J. Schindelin, P. Tomancak, Software for bead-based registration of selective

plane illumination microscopy data. Nat methods 7, 418–419 (2010).

54. S. Saalfeld, R. Fetter, A. Cardona, P. Tomancak, Elastic volume reconstruction from series of ultra-thin

microscopy sections. Nat methods 9, 717–720 (2012).

55. J. Vargas, A.-L. Álvarez-Cabrera, R. Marabini, J. M. Carazo, C. O. S. Sorzano, Efficient initial volume

determination from electron microscopy images of single particles. Bioinformatics 30, 2891–2898 (2014).

56. A. W. Wetzel, et al., Registering large volume serial-section electron microscopy image sets for neural

circuit reconstruction using FFT signal whitening in 2016 IEEE Applied Imagery Pattern Recognition

Workshop (AIPR), (2016), pp. 1–10.

57. T. Xin, et al., A novel registration method for long-serial section images of EM with a serial split technique

based on unsupervised optical flow network. Bioinformatics 39, btad436 (2023).

58. Dawson-Haggerty, Trimesh. (2023). Deposited 2023.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1109/TMI.2019.2897538
https://doi.org/10.1109/TMI.2019.2897538
https://doi.org/10.1145/3584371.3612965
https://doi.org/10.1145/3584371.3612965
https://doi.org/10.1007/978-3-030-78191-0_1
https://doi.org/10.1007/978-3-030-78191-0_1
https://doi.org/10.1109/TMI.2009.2035616
https://doi.org/10.1109/TMI.2009.2035616
https://doi.org/10.1109/CVPR42600.2020.00652
https://doi.org/10.1109/CVPR42600.2020.00652
http://arxiv.org/abs/1904.02643
https://doi.org/10.1038/s41467-023-44354-0
https://doi.org/10.1038/s41467-023-44354-0
https://doi.org/10.1038/nmeth0610-418
https://doi.org/10.1038/nmeth0610-418
https://doi.org/10.1038/nmeth.2072
https://doi.org/10.1038/nmeth.2072
https://doi.org/10.1093/bioinformatics/btu404
https://doi.org/10.1093/bioinformatics/btu404
https://doi.org/10.1109/AIPR.2016.8010595
https://doi.org/10.1109/AIPR.2016.8010595
https://doi.org/10.1093/bioinformatics/btad436
https://doi.org/10.1093/bioinformatics/btad436
https://trimesh.org/
https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

59. M. Desbrun, M. Meyer, P. Schröder, A. H. Barr, Implicit fairing of irregular meshes using diffusion and

curvature flow in Proceedings of the 26th Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’99., (ACM Press/Addison-Wesley Publishing Co., 1999), pp. 317–324.

60. J. Vollmer, R. Mencl, H. Müller, Improved Laplacian Smoothing of Noisy Surface Meshes. Computer

graphics forum 18, 131–138 (1999).

61. M. Musy, et al., Vedo. Zenodo. https://doi.org/10.5281/zenodo.8067437. Deposited 21 June 2023.

62. Q Project, Qt6. (2025). Deposited 2025.

63. A. Collette, Python and HDF5: Unlocking Scientific Data (O’Reilly, 2013).

64. P. D. Team, PyTables: Hierarchical datasets in Python. (2025). Deposited 2025.

65. C. Pape, et al., Z5. Zenodo. https://doi.org/10.5281/zenodo.11671609. Deposited 15 June 2024.

66. A. Miles, et al., Zarr-python. Zenodo. https://doi.org/10.5281/zenodo.14873428. Deposited 14 February

2025.

67. A. Shapson-Coe, et al., A petavoxel fragment of human cerebral cortex reconstructed at nanoscale

resolution. Science 384, eadk4858 (2024).

68. A. Azevedo, et al., Connectomic reconstruction of a female Drosophila ventral nerve cord. Nature 1–9

(2024). https://doi.org/10.1038/s41586-024-07389-x.

69. S. Dorkenwald, et al., Neuronal wiring diagram of an adult brain. Nature 634, 124–138 (2024).

70. J. A. Bae, et al., Functional connectomics spanning multiple areas of mouse visual cortex. Biorxiv

2021.07.28.454025 (2023). https://doi.org/10.1101/2021.07.28.454025.

71. N. L. Turner, et al., Reconstruction of neocortex: Organelles, compartments, cells, circuits, and activity. Cell

185, 1082–1100.e24 (2022).

72. L. K. Scheffer, et al., A connectome and analysis of the adult Drosophila central brain. Elife 9, e57443

(2020).

73. J. A. W. Heymann, et al., Site-specific 3D imaging of cells and tissues with a dual beam microscope.

Journal of structural biology 155, 63–73 (2006).

74. G. Knott, H. Marchman, D. Wall, B. Lich, Serial Section Scanning Electron Microscopy of Adult Brain

Tissue Using Focused Ion Beam Milling. J neurosci 28, 2959–2964 (2008).

75. S. B. Leighton, SEM images of block faces, cut by a miniature microtome within the SEM - a technical note.

Scan electron microsc 73–76 (1981).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1145/311535.311576
https://doi.org/10.1145/311535.311576
https://doi.org/10.1111/1467-8659.00334
https://doi.org/10.5281/zenodo.8067437
https://www.qt.io/product/qt6
https://www.pytables.org/
https://doi.org/10.5281/zenodo.11671609
https://doi.org/10.5281/zenodo.14873428
https://doi.org/10.1126/science.adk4858
https://doi.org/10.1126/science.adk4858
https://doi.org/10.1038/s41586-024-07389-x
https://doi.org/10.1038/s41586-024-07558-y
https://doi.org/10.1101/2021.07.28.454025
https://doi.org/10.1016/j.cell.2022.01.023
https://doi.org/10.7554/eLife.57443
https://doi.org/10.1016/j.jsb.2006.03.006
https://doi.org/10.1523/JNEUROSCI.3189-07.2008
https://doi.org/10.1523/JNEUROSCI.3189-07.2008
https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

76. W. Denk, H. Horstmann, Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-

Dimensional Tissue Nanostructure. Plos biology 2, e329 (2004).

77. K. D. Micheva, S. J. Smith, Array Tomography: A New Tool for Imaging the Molecular Architecture and

Ultrastructure of Neural Circuits. Neuron 55, 25–36 (2007).

78. R. Schalek, et al., Development of High-Throughput, High-Resolution 3D Reconstruction of Large-Volume

Biological Tissue Using Automated Tape Collection Ultramicrotomy and Scanning Electron Microscopy.

Microscopy and microanalysis 17, 966–967 (2011).

79. H. Horstmann, C. Körber, K. Sätzler, D. Aydin, T. Kuner, Serial Section Scanning Electron Microscopy

(S3EM) on Silicon Wafers for Ultra-Structural Volume Imaging of Cells and Tissues. Plos one 7, e35172

(2012).

80. K. J. Hayworth, et al., Imaging ATUM ultrathin section libraries with WaferMapper: A multi-scale approach

to EM reconstruction of neural circuits. Front neural circuits 8, 68 (2014).

81. J. Maitin-Shepard, et al., Neuroglancer: Web-based volumetric data visualization. (2021).

https://doi.org/10.5281/zenodo.5573294. Deposited 16 October 2021.

82. K. M. Harris, et al., A resource from 3D electron microscopy of hippocampal neuropil for user training and

tool development. Sci data 2, 150046 (2015).

83. N. Kasthuri, et al., Saturated Reconstruction of a Volume of Neocortex. Cell 162, 648–661 (2015).

84. J. T. Vogelstein, et al., A community-developed open-source computational ecosystem for big neuro data.

Nat methods 15, 846–847 (2018).

85. T. Zhao, D. J. Olbris, Y. Yu, S. M. Plaza, NeuTu: Software for Collaborative, Large-Scale, Segmentation-

Based Connectome Reconstruction. Front. neural circuits 12 (2018).

86. W. T. Katz, S. M. Plaza, DVID: Distributed Versioned Image-Oriented Dataservice. Front. neural circuits 13

(2019).

87. C. S. Xu, et al., An open-access volume electron microscopy atlas of whole cells and tissues. Nature 599,

147–151 (2021).

88. R. J. Hider, et al., The Brain Observatory Storage Service and Database (BossDB): A Cloud-Native

Approach for Petascale Neuroscience Discovery. Frontiers in neuroinformatics (2022).

https://doi.org/10.3389/fninf.2022.828787.

89. W. Silversmith, et al., Igneous: Distributed dense 3D segmentation meshing, neuron skeletonization, and

hierarchical downsampling. Front. neural circuits 16 (2022).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint

https://doi.org/10.1371/journal.pbio.0020329
https://doi.org/10.1371/journal.pbio.0020329
https://doi.org/10.1016/j.neuron.2007.06.014
https://doi.org/10.1016/j.neuron.2007.06.014
https://doi.org/10.1017/S1431927611005708
https://doi.org/10.1017/S1431927611005708
https://doi.org/10.1371/journal.pone.0035172
https://doi.org/10.1371/journal.pone.0035172
https://doi.org/10.3389/fncir.2014.00068
https://doi.org/10.3389/fncir.2014.00068
https://doi.org/10.5281/zenodo.5573294
https://doi.org/10.1038/sdata.2015.46
https://doi.org/10.1038/sdata.2015.46
https://doi.org/10.1016/j.cell.2015.06.054
https://doi.org/10.1038/s41592-018-0181-1
https://doi.org/10.3389/fncir.2018.00101
https://doi.org/10.3389/fncir.2018.00101
https://doi.org/10.3389/fncir.2019.00005
https://doi.org/10.1038/s41586-021-03992-4
https://doi.org/10.3389/fninf.2022.828787
https://doi.org/10.3389/fncir.2022.977700
https://doi.org/10.3389/fncir.2022.977700
https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/

