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Abstract 

As the serial section community transitions to volume electron microscopy, tools are needed to balance rapid 

segmentation efforts with documenting the fine detail of structures that support cell function. New annotation 

applications should be accessible to users and meet the needs of the neuroscience and connectomics 

communities while also being useful across other disciplines. Issues not currently addressed by a single, 

modern annotation application include: 1) built-in curation systems with utilities for expert intervention to 

provide quality assurance, 2) integrated alignment features that allow for image registration on-the-fly as image 

flaws are discovered during annotation, 3) simplicity for non-specialists within and beyond the neuroscience 

community, 5) a system to store experimental meta-data with annotation data in a way that researchers remain 

masked regarding condition to avoid potential biases, 6) local management of large datasets, 7) fully open-

source codebase allowing development of new tools, and more. Here, we present PyReconstruct, a modern 

successor to the Reconstruct annotation tool. PyReconstruct operates in a field-agnostic manner, runs on all 

major operating systems, breaks through legacy RAM limitations, features an intuitive and collaborative 

curation system, and employs a flexible and dynamic approach to image registration. It can be used to analyze, 

display, and publish experimental or connectomics data. PyReconstruct is suited for generating ground truth to 

implement in automated segmentation, outcomes of which can be returned to PyReconstruct for proofreading 

and quality control. 

Significance statement  

In neuroscience, the emerging field of connectomics has produced annotation tools for reconstruction that 

prioritize circuit connectivity across microns to centimeters and farther. Determining the strength of synapses 

forming the connections is crucial to understand function and requires quantification of their nanoscale 

dimensions and subcellular composition. PyReconstruct, successor to the early annotation tool Reconstruct, 

meets these requirements for synapses and other structures well beyond neuroscience. PyReconstruct lifts 

many restrictions of legacy Reconstruct and offers a user-friendly interface, integrated curation, dynamic 

alignment, nanoscale quantification, 3D visualization, and more. Extensive compatibility with third-party 

software provides access to the expanding tools from the connectomics and imaging communities. 
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Introduction 

Reconstruct was released more than 20 years ago as one of the first open-source image annotation 

applications that could be run on a personal computer (1–3), also cite SynapseWeb download cite here. It 

offers a robust set of annotation features that are user-defined and field-agnostic. Since its release, additional 

annotation applications have followed, many written with connectomics-level analyses in mind (4–12). These 

modern applications have prioritized features that allow for rapid imaging and long-range segmentation of cell 

membranes to identify circuit connectivity (13–16). However, features needed for the more detailed annotation 

and curation of synapses and subcellular features in the context of circuit-level analyses are downplayed.  

Despite the many compelling features offered by the alternatives, Reconstruct continues to be used by a large 

and diverse group of researchers from a variety of fields. Reconstruct has been used to produce data in 

hundreds of publications ranging from neuroscience (17–23) to plant biology (24, 25), entomology (26–28), 

human anatomy (29), herpetology (30), and materials science (31), to name a few. We attribute its widespread 

use in part to Reconstruct’s simple interface and flexible approach to annotation. Image stacks are imported 

into the application, and with little effort, researchers can quickly begin annotating serial sections, export data 

for analysis, and produce publication-quality 3D visualizations, all in a single intuitive application.  

Despite significant advances in EM annotation tools, several fundamental challenges persist. Many require 

considerable programming expertise to access full annotation details and advanced features. This requirement 

limits accessibility to technical specialists rather than serving the broader research community. Most annotation 

tools lack robust, integrated systems for quality control and data curation. Many do not accommodate post-hoc 

realignment of serial sections, making it difficult to correct alignment errors discovered during annotation or 

analysis. Finally, most tools separate meta-data from image data, forcing researchers to maintain parallel data 

management systems and complicating long-term data preservation. These limitations can significantly impede 

annotation workflows and compromise data integrity, particularly in large-scale projects.  

Reconstruct has long been overdue for a major overhaul. It only ran natively on Windows machines, datasets 

were RAM-restricted in size, a complex system of transformations hampered new alignment strategies, and 

minimal interaction with outside tools restricted its expansion. Limitations like these required users to 

implement kludgy workarounds that complicated their workflows. Despite these limitations, Reconstruct 

continues to be used for its simplicity and efficiency.  

With these limitations in mind, we have produced a generalizable and streamlined annotation tool in the spirit 

of Reconstruct that integrates readily into any serial imaging pipeline (Fig. 1). We have named this new system 

PyReconstruct, a modern, user-friendly successor to what we now refer to as “legacy” Reconstruct. 

PyReconstruct was written in Python, retaining legacy Reconstruct’s intuitive interface and addressing the 

shortcomings necessary to transition from serial section to the volume electron microscopy needed for circuit 

analyses. It features an integrated curation system for maintaining data quality, flexible alignment capabilities, 
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and unified data storage keeping meta-data and image data together. PyReconstruct runs on most operating 

systems, employs lightweight data structures, implements dynamic alignment, and provides multi-resolution 

scaling. It lifts RAM restrictions allowing users to scale up to large volumes. PyReconstruct is also backward 

compatible with data annotated in legacy Reconstruct, giving legacy users the ability to port their data into the 

modern annotation environment. Importantly, PyReconstruct is fully opensource and users are at liberty to 

customize the source code to their own use cases.  

User experience 

We designed the core functionalities and features of PyReconstruct to facilitate working with serial images in 

an unopinionated manner, to maintain data integrity, and to promote a collaborative workflow. In the sections 

below, we describe the annotation and segmentation interface, object organization capabilities, curation tools, 

alignment systems, and data visualization features.  

Segmentation and object organization 

PyReconstruct offers an uncomplicated graphical interface for registration, segmentation, and meshing of 

image data and allows for multiple points of entry and exit to and from third-party software (Fig. 2). By 

leveraging Python wrappers for openCV (4.8.1), stacks of serial 2D images can be loaded into PyReconstruct 

in multiple formats (.tiff, .jpeg, .png, etc.). Though PyReconstruct directly imports standard images without 

conversion, users can also benefit from its support of precomputed volume formats, the advantages of which 

are outlined below.  

The user’s primary workspace contains a single image from the series (the “section”) displayed in the main 

window (Fig. 3A). The trace palette, tool bar, section navigator, and brightness/contrast sliders are 

superimposed over the image and are moveable around the field, such that the user can personalize their 

workspace as they annotate. Detachable windows display quantitative 2D (the trace list) and 3D annotation 

data (the object list) as it is being collected in the main window (Fig. 3B). Users are at liberty to choose trace 

name, color, tag, and appearance. The trace list allows users to view and edit traces on a section and see 

quantitative measurements, while the object list allows users to view and edit object data and see quantitative 

measurements in 3D based on the calibrated section thickness (2).  

In PyReconstruct, 3D “objects” represent collections of 2D “contours” over the image stack that belong to a 

single feature in the series. An object’s contour on a single section may consist of one or several separate 

“traces” (Fig. 4A). Segmentation data in PyReconstruct is stored as lists of x and y positions that make up 

individual traces, and objects can be organized and classified in a number of ways. Hierarchical and nested 

objects groups can be created by assigning “hosts” that point to other objects. For example, “synapse” may 

point to “dendrite” and/or “axon”. Users can also create custom categories to assign objects qualitative 

measures. For example, “synapse” from the above example could also be categorized by “synapse type” as 
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“excitatory” or “inhibitory”. For cases that fall outside host-inhabitant relationships and categorical variables, 

users can create simple, custom-named groups. Because these classification schemes are customizable, 

users can define semantically meaningful groups and relationships that are specific to their use-cases. 

Rich, free-form annotations and event tracking 

PyReconstruct allows for rich annotations that might otherwise be stored externally and risk being separated 

from the original series. Annotations that provide meta-data and context to series features can be applied to 

individual traces (tags), entire objects (groups and comments), and points of interest in the field (flags) (Fig. 

4B-C). For example, traces denoting object profiles distorted by image artifacts might be tagged to indicate 

they have been interpolated (or inferred by the user) from traces on adjacent intact sections. Users may flag 

objects in a series that serve as probands or objects the annotator wishes to revisit later. Objects can be 

grouped to track their use in specific publications or projects, while comments provide additional explanatory 

notes. Free-form annotations like these enable users to create and customize their own annotation system 

based on project needs.  

Experimentalists often revisit previously annotated series to test new hypotheses, and keeping track of the 

history of actions performed in a series may serve to guide subsequent annotation. In the past, this information 

was stored externally. PyReconstruct provides automation by logging all actions that add new or modify 

existing annotation data logged. Log entries contain brief descriptions of annotation events, including date, 

time, user, objects edited, and the section or sections on which the action was performed. Users can view and 

filter the full log to display entries relevant to one or more objects.  

Collaborative curation for quality control 

Annotating large amounts of serial section data is generally performed among teams of annotators and 

PyReconstruct was developed with this approach in mind. Annotations performed by a team member are 

subsequently passed to a more expert annotator to be proofread and curated for quality assurance (Fig. 5). To 

this end, PyReconstruct includes a simple curation system, and users can be assigned curation tasks through 

the object list (Fig. 6A). Curation history (user, date assigned, completion status, etc.) is tracked with the series, 

so that project leads can verify if annotation criteria is applied uniformly among team members and correct 

tracing errors. Curation data and history is readily available and displayed through the object list. Free-form 

annotations (see Fig. 4B-C) provide further context to aid collaboration among annotation teams. Field flags 

also include a running commentary that can be used to alert present and future annotators to information about 

locations in the series (Fig. 6B). Flag meta-data including the creation time, username, and related notes are 

tracked and stored with series data. A conversation-style comment system allows users to maintain a running 

discussion for each flagged item. Tags applied to traces on a particular section can be accessed in a trace list 

(Fig. 6C), which when filtered and sorted, provides a rapid means to identify the status of a trace.  
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PyReconstruct runs on a local machine and does not currently implement a client-server solution to allow 

multiple users to work simultaneously on a single series. Trace conflicts might therefore arise when series 

annotated simultaneously by different users are subsequently merged. For example, two annotators tracing the 

same object will lead to non-identical, overlapping traces representing the same feature on a section. Merging 

large, heavily annotated series can result in many duplicate traces that pollute the workspace and lead to 

quantification errors.  

To deal with this problem, a trace import system has been implemented in PyReconstruct that identifies and 

alerts users to merge conflicts that must be resolved. Conflicting traces are determined based on the Jaccard 

similarity coefficient, trace history, and annotator preference. Users can determine an overlap threshold above 

which traces are considered “identical enough”, which gives PyReconstruct leeway to discard all but one 

overlapping trace. This provides some automation to the tedious tasks of curating multiple traces for a single 

feature. Remaining conflicts are flagged for resolution, and users can walk through each conflict systematically.  

Dynamic alignments applied on demand 

During processing, sectioning, and imaging, planar specimens are subjected to a variety of physical alterations 

(e.g., compression, shrinkage, heating) and technical complications (e.g., stage and specimen drift, and non-

uniform scan and lens characteristics) that introduce linear and non-linear distortion into the final images (37–

39). Image distortion can be mitigated through choice of processing protocol (40–43), imaging modality (44, 

45), and post-hoc computational processing, but in many cases must ultimately be corrected through image 

registration. Registration methods are rapidly improving (46–57), and choice in strategy depends on distortion 

type and personal preference. We therefore sought to implement a flexible and dynamic registration strategy to 

allow users 1) to import alignments generated externally, 2) to perform simple registration inside 

PyReconstruct, and 3) to store multiple alignments that can be applied to stacks of images on the fly (Fig. 7).  

An “alignment” in PyReconstruct is represented by a list of affine transformations (Fig. 7A). Each section in the 

series is associated with a single affine transformation, which is stored as a set of six numbers that correspond 

to the first two rows of the 2D transformation matrix. This single transformation is applied to both image pixels 

and contour data of a particular section, which are then displayed in the field when the section is called by the 

user. In this way, users whose images require affine transformations alone need not work with images whose 

alignments have been previously “baked in” (i.e., transformations applied directly to stored images).  

This strategy offers several advantages. First, the only image data stored with a project are the unaligned 

images that were initially produced at the microscope and imported into PyReconstruct, dramatically reducing 

the size of a project. (Users can still of course use third-party software like Fiji, TrakEM2, and SWiFT-IR to 

import images with baked-in alignments and perform additional local alignments.) Second, stored contour 

points reflect the x and y position of the points on the unaligned images (not the transformed images), making 

it possible for users to apply external transformations to those points when exporting contour data from 
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PyReconstruct. Third, users can rapidly tweak a section’s alignment should they note alignment flaws while 

annotating, which is a common occurrence when working with serial images.  

Finally, the simplicity of this strategy means users are at liberty to store multiple alignment profiles specific to 

an object, region of interest, or context, which can be applied to the series on demand (Fig. 7B). This is 

especially useful when annotating objects in areas of section deformation, for example, on either side of image 

artifacts (breaks, folds, tears, etc.), which are frequent in serial section EM. These artifacts would otherwise 

require users to use third-party image editing software to correct. Thus, a complete history of alignments for 

each series is stored. Objects in the series can be assigned to specific alignments, ensuring the object’s 

quantitative measurements and 3D reconstructions are accurate.  

PyReconstruct supports simple manual alignment natively and users can interactively translate, rotate, scale, 

and shear images in the main window. Users can also directly edit a section’s affine transformation through the 

menu bar (Fig. 7C). Affine transformations can be estimated by identifying fiducial markers in the field, such as 

cell structures that span multiple sections. Transformations performed on single sections can be applied 

throughout the remaining sections, allowing for a correction in alignment to be propagated throughout the 

series. PyReconstruct supports importing alignments from other PyReconstruct projects as well as from 

external applications, for example, directly from SWiFT-IR project files (33, 56) or in the form of simple .txt files, 

each line representing an affine transformation.  

Data visualization and analysis 

PyReconstruct’s object list represents a serialized view of objects, their measurements, and meta-data, and 

allows users to export data for analysis and render objects in 3D (Fig. 8). 2D contours are voxelized and 

represented as NumPy arrays, which are translated through a matrix-to-marching-cubes algorithm provided by 

the trimesh library (58) to generate watertight triangle meshes for visualization and quantification (Fig. 9A). The 

trimesh library provides a number of in-place smoothing filters (59, 60) that can be applied to meshes in 

PyReconstruct. 3D meshes are visualized in a customized 3D scene built on top of the Python scientific 

visualization library vedo (61). The meshing strategies employed natively in PyReconstruct are modularized, 

such that users proficient in Python can implement more complex meshing algorithms accessible from the user 

interface should they choose to do so. 3D meshes can be exported from the object list in several formats (obj, 

ply, stl, etc.), which can be imported into external 3D modeling software, such as Blender, for further editing.  

Segmentation issues are often not apparent when viewing objects as 2D profiles. Misalignments, poor 

segmentation, and misplaced traces become more evident when objects are rendered in 3D, and annotation 

quality is improved when users switch between 2D and 3D views while working. PyReconstruct’s 3D scene 

includes several features to facilitate these actions. Double-clicking on a point in the 3D scene focuses on that 

point in the main window, providing a rapid way to identify 2D locations from the 3D space (Fig. 9B). Objects 

rendered in the 3D scene can be translated and rotated, allowing the user to customize the 3D view, for 

example, to visualize all objects of interest in a single glance (Fig. 9C). Objects from other series can also be 
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imported into the current 3D scene. Customized 3D views can be saved as “scenes” that store object attribute 

and location information, which can be opened across annotation sessions. Scenes, in addition to aiding users 

in annotation, mitigate the need to export meshes to external 3D modeling software when making simple 

figures for publications.  

Under the hood 

Interface framework, data structures, and legacy compatibility 

PyReconstruct’s user interface is powered by Python bindings for Qt6, an opensource and platform-

independent framework for developing graphical user interfaces (62). Users can therefore run PyReconstruct 

on most major modern operating systems (Windows, macOS, and many Linux distros) right out of the box.  

Annotation data in legacy Reconstruct was stored over multiple “trace files”, one for each section, making 

moving series data between computers and users cumbersome and prone to data loss. Storing annotation 

data in a single, locally stored file facilitates data sharing amongst users. Annotation data in PyReconstruct is 

collected and stored in a single JSON-structured file with the extension .jser (portmanteau of “JSON” and 

“series”, pronounced “jay-sir”, Fig. 10). Image data are stored separately in a format and location defined by 

the user.  

The jser file is divided into data pertaining to individual sections (section-specific data) and data pertaining to 

the entire series (series-specific data). Section-specific data contain contour information and annotations, 

transformations, and the section’s image attributes (magnification, brightness, contrast, and image file pointer). 

Series-specific data store information that spans multiple sections, including, for example, series meta-data, 

object attributes, current alignment, user information, and user preferences. All annotation data is accessible 

graphically through the application and through PyReconstruct’s Python API.  

PyReconstruct implements a composite file pattern approach when loading and saving data: Data stored in the 

single jser file is decomposed at startup into discrete temporary hidden files that hold information pertaining to 

individual sections and the series. This approach optimizes RAM utilization while processing contour data and 

provides fault tolerance should the program unexpectedly close, or the user’s system fails.  

Labs from a variety of fields continue to employ legacy Reconstruct as the primary tool used to annotate serial 

section EM data manually due in part to its ease of use. We therefore sought to make porting data from legacy 

Reconstruct into PyReconstruct simple. PyReconstruct is backward compatible with legacy structures: Series 

that were previously annotated in Reconstruct and saved as XML can be loaded into PyReconstruct by simply 

pointing to the legacy structures. No external conversion is necessary. Importantly, this process is bidirectional: 

Annotation data collected in PyReconstruct can also be exported as legacy XML structures in case users have 

established workflows that rely on legacy structures remaining intact, for example, with neuropil tools (36). 
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Features only compatible with PyReconstruct are saved in the jser file. Users therefore retain full access to the 

legacy application should they choose to do so and can still benefit from PyReconstruct’s modern annotation 

features.  

Lifting RAM restrictions through multi-resolution scaling 

Datasets loaded in legacy Reconstruct could exceed RAM; however, two sections were loaded into memory 

simultaneously. This meant large images needed to be cropped to a size compatible with the user’s RAM 

specs. Modern, ultra-large data viewers typically solve this issue by employing data structures that store 

chunked, compressed N-dimensional arrays at multiple resolution (or “scales”), such as with HDF5 or Zarr. 

Precomputed image datasets can be manipulated through a variety of wrappers such as h5py (63), PyTables 

(64), Z5 (65), and zarr-python (66). Instead of mapping entire images from disk into RAM, moving compressed 

chunks of data dramatically reduces loading times and makes navigating serial sections a much quicker and 

more pleasant experience. Saving the image data at multiple resolutions further reduces the amount of data 

loaded when users view low magnification views of a section.  

To lift legacy Reconstruct’s RAM restrictions, we have implemented a multi-resolution Zarr approach to loading 

and viewing image data in PyReconstruct. Zarr was chosen as it was designed specifically for Python, 

supports robust multi-threading, provides access to customizable compressor and filter classes, and is used 

extensively in machine-assisted segmentation. Unlike applications that consolidate serial sections into a 

volumetric, 3D Zarr, PyReconstruct implements a 2D layer approach: each section being stored as a separate 

annotated group, which allows users to switch between the original images and Zarr at will.  

Storing and retrieving image data in a chunk-wise manner means PyReconstruct users are in practice no 

longer RAM-limited when annotating series. Users are now virtually unbounded by series size, restricted only 

by the disk space available on their local machines, which can be augmented with external and remote storage. 

This strategy permits near-instantaneous loading of images in the field, as only chunks at the lowest possible 

resolution based on zoom are loaded during viewing. PyReconstruct maintains its flexible alignment strategy 

by applying affine transformations non-destructively, only after image data is loaded. A multi-resolution Zarr 

approach does increase the overall size of data stored per project, but PyReconstruct’s scaling strategy means 

Zarr datasets are never heavier than 1.33 times the size of the original image stack.  

Interacting with external large-image applications and datasets 

Volumetric datasets are much larger than they used to be, even recently (67–72). This is due in part to the 

transition from volumes constructed from small-field TEM images to those from high-throughput methods such 

as focused ion beam SEM (73, 74), serial block face SEM (75, 76), and tape and array methods (77–80). 

Relying on manual segmentation alone is therefore increasingly unfeasible. However, many labs (including our 

own) continue to employ manual segmentation as a primary technique. We therefore sought to provide a 
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simple platform that annotators can use to begin to interact with the many automated segmentation tools being 

developed by the connectomics community.  

Neuroglancer is a WebGL-based application for viewing, annotating, and querying large, multi-resolution 

volumetric data (81) and is the application of choice in several connectomics projects. Porting data to and from 

Neuroglancer offers one path through which automated segmentation efforts can be tapped into. 

PyReconstruct provides a graphical interface where users can export image data and contours as labeled 

Zarrs compatible with Neuroglancer. Data annotated in Neuroglancer can also be imported and converted to 

contour data for use in PyReconstruct.  

Discussion 

PyReconstruct provides solutions that enhance manual segmentation of serial images in a user-friendly and 

familiar interface and offers several advantages over legacy Reconstruct. The target audience includes 

researchers from a variety of largely unrelated fields, who rely on manual annotating serial sections and 

volume EM data. Thus, PyReconsruct is a non-specialized tool that offers platform-independence, simplified 

data structures, a unique alignment strategy, and functionality to interact with a variety of external tools.  

Integrated data quality control is often overlooked in annotation software, requiring users to develop their own 

external tracking systems. PyReconstruct has a robust and built-in curation system that addresses this critical 

gap. By embedding curation data directly within project files, PyReconstruct provides a streamed approach to 

team coordination and data integrity. PyReconstruct is fully opensource under a GNU General Public License 

v3 and users are encouraged to scrutinize and improve its source code, which is publicly available at GitHub 

(https://github.com/synapseweb/pyreconstruct). Opensource tools like PyReconstruct empower users to create 

custom solutions that can be integrated into the main product to the benefit the broader scientific community. 

This open environment also makes it possible to develop data conversion strategies that will allow 

PyReconstruct to accept annotations and segmentations from other systems.  

As our understanding of alignment evolves, image registration strategies are advancing (46–57). The ability to 

re-align a series means users can adapt and refine their work at all stages, rather than being constrained to a 

single baked-in alignment. Image flaws resulting in alignment errors are often not noticed until the annotation 

stage, when users are viewing sections at higher magnifications. The ability to tweak existing alignments 

rapidly and create new alignments when required therefore facilitates annotation and improves the quality of 

the 3D outcomes. In PyReconstruct, users are at liberty to align the series, import alignments from external 

software, and store multiple alignments that can be switched to and from on demand. Importantly, this strategy 

enables users to employ simple, non-elastic alignments in series that suffer from image artifacts that warp 

portions of a section (see Fig. 7). Multiple alignment stacks for a single series and the ability to realign on 

demand also provides ground truth for developing more sophisticated automatic alignment methods.  
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Simplicity and generalizability come with tradeoffs. Fully segmenting, annotating, and curating EM volumes is 

time-consuming. For example, the complete manual annotation of a single, roughly 180 μm3 volume of 

hippocampal tissue—an exceedingly small volume by today’s connectomics standards—took a team of expert 

annotators more than a year to complete and curate using legacy Reconstruct (82). The process of scaling up 

is therefore impractical (if not impossible) when annotators rely on manual segmentation alone. The push by 

many teams to produce semi- and fully automated segmentation pipelines has led to the segmentation of 

breathtakingly large datasets (67–69, 71). Nevertheless, these pipelines remain largely relegated to specialist 

communities. Therefore, a need remains to adopt automated segmentation approaches in simple user 

interfaces for non-specialist users.  

One key challenge in adopting automated segmentation routines lies in balancing technical sophistication with 

accessibility. Modern automated segmentation tools require computational infrastructure and expertise in 

programming. The benefits of expanding access to these tools are immense. Moving forward, the developers 

of PyReconstruct are evolving its API and plugin framework to support the embedding of customized 

automated segmentation features into the software. This modular approach will enable researchers to leverage 

cutting-edge routines without the need for deep technical expertise, bridging the gap between specialist and 

non-specialist communities.  

The evolution of imaging modalities over the past several decades has led to microscopy datasets that are 

larger than they have ever been (67–72, 83). These massive datasets have predominantly required server-

based storage. Annotation tools that have grown up around these projects have therefore prioritized this 

approach (4, 9, 10). At present, PyReconstruct is a fully standalone application without server-client 

dependencies. Its users are not dependent on an internet connection, server maintenance, or remote data 

stores. While this approach offers simplicity and autonomy, users may need to generate manageable 

subvolumes from their data, especially when working with extremely large datasets.  

Previously, researchers faced the onerous task of manually cropping individual serial images. Today, the 

widespread adoption of chunk-wise data storage formats and the increasing availability of standardized, open-

source databases for large image data (84–88) have significantly mitigated these limitations. Users can 

efficiently extract subvolumes from remotely stored datasets through Python libraries like CloudVolume, which 

offer APIs to access precomputed volumes (89). These tools can be readily integrated into a workflow to 

sample regions from larger volumes and use the suite of annotation, curation, quantification, and visualization 

features to produce high quality data output from PyReconstruct.  
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Meshing
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Imaging
Pipelines

Figure 1. Example serial imaging pipeline from 

experimentation through data analysis. 

PyReconstruct encompasses the most time-

consuming steps (green box) in pipelines that rely on 

manual segmentation or proof reading of serial images 

to produce analyzable data. Here, a serial section EM 

pipeline is shown. Image registration, segmentation, 

and contour meshing can be performed in a single 

application. Images from any source can be used in 

this pipeline, including series or single sections.
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Registration

Meshing
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External Formats + Tools Manual

1
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3
31

2

TrakEM2 AlignEM-
SWiFT

Zarr

...

3D Publication Quantitative
Output

External Tools

...

Segmentation

Annotation

Curation

Segmentation 

Figure 2. PyReconstruct readily interacts with 

third-party software. Core PyReconstruct 

functions are highlighted in green and include 

native manual registration through the application 

interface, while also supporting importation of pre-

registered images and transformation matrices (6, 

32, 33). PyReconstruct stores detailed 

segmentation data as 2D contours and features a 

checklist-based curation system for quality 

assurance. Users can generate, view, and export 

quantitative data and meshes directly in 

PyReconstruct to create publication-ready figures 

or for use externally in programming languages 

such as Python and R. Exported meshes can be 

further edited in advanced 3D platforms like 

Blender for biophysical modeling using programs 

like CellBlender and Mcell (34-36).
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Menu
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Contrast

Section
Nav

Trace
Palette

Status
Bar

Tool
Bar

3D Scene

Trace List

Object ListA B

Figure 3. Windowing schema in PyReconstruct. (A) The 

main window contains images and widgets (tools, trace 

palette, etc.) that can be moved around the frame and toggled 

on and off, allowing users to customize their primary 

workspace. (B) Users interact with 2D and 3D data as it is 

being collected through ancillary, detachable windows, such as 

the trace list, object list, and 3D scene. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/


1

2

3

Object

Trace

Trace
Contour3

Contour2

Contour1

A

B

obj_1

obj_2

obj_3

Object
group 1

Object
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Figure 4. PyReconstruct stores both free-form and 

hierarchically organized annotation data. (A) Object profiles on 

individual sections are identified and their outlines traced by 

annotators. An object’s 2D contour consists of all traces on a 

section belonging to the object. 3D objects are constructed from 

multiple contours across serial images. (B) A trace tagging system 

allows users to ascribe additional information concerning 2D 

segmentations. (C) Annotations applied to objects include groups 

and comments, which can be accessed from the object list.
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Annotated series

Annotator(s)

Curator(s) Team Lead

approves corrects rejects + tags trace addresses question

Un-annotated series

Team Lead

incorrect!

? Trace SER?

? Trace SER?

! Please!

!

?

merges into

appropriate mistake poses question

AnnotatorCurator

AnnotatorCurator

AnnotatorCurator

Team
Lead

assigns

Figure 5. Implementation of a team-based annotation and curation scheme to ensure quality control. A 

team lead (blue) assigns annotation (green) and curation tasks (pink) to team members working 

simultaneously on copies of a single series. Curators approve, correct, or reject traces, which can be tagged 

for review. Annotators can pose questions to team leaders through a system of flags with commentary that 

can be answered and returned. As annotations are curated, the partially annotated series can be passed back 

to the team lead. Curated series are merged into a single annotated dataset for analysis. PyReconstruct 

provides features at multiple steps in this pathway to facilitate curation and quality control.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.21.649793doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.21.649793
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B

C

Figure 6. PyReconstruct provides automation 

for curating segmentation data. (A) Tracking of 

curation tasks is stored with series data in 

PyReconstruct. Curation tasks and status can be 

assigned interactively to objects from the object 

list. Multiple filtering options allow users to view 

pending and completed curation tasks assigned to 

them and to others. Here, users were randomized 

to curation tasks through PyReconstruct’s Python 

API. (B) Flags placed in the field are shown in a 

flag list, which can be sorted in various ways. 

Running commentary allows team members to 

pose questions and discuss issues that arise 

during annotation. (C) Traces can be tagged with 

information that is accessed from a sortable trace 

list.
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[ T ]
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Original

alignment none

alignment red
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Displayed
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Figure 7. Multiple alignment profiles applied to 

serial sections on demand. (A) PyReconstruct 

stores image and contour data in their 

untransformed state. Alignments are represented as 

lists of affine transformations ([T]), one for each 

section. Multiple alignments are stored as profiles 

that can be applied independently on demand. 

Image artifacts (resulting from tears, folds, etc. in 

serial sections) often warp serial sections and 

produce local misalignments. The ability to tweak, 

create, and store multiple alignments facilitates 

annotation. (B) Alignment profiles can be accessed 

and modified through the user interface. The current 

alignment is displayed by name in the main 

window’s status bar (bottom of main window, see 

Fig. 3A). (C) New alignments can be created in 

PyReconstruct and imported from external 

applications or section transformations can be 

edited directly in the interface, allowing users fine 

control over series alignments.
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Define categorical 
variables and values

Filter by built-in and
custom filters

Define hierarchical 
schema amongst 

objects

Define and assign
custom groups

A

B

C

D

Figure 8. Three-dimensional data is stored in the object list. 

Data concerning 3D objects constructed from 2D contours is 

displayed in the object list. Users can sort by built-in and custom 

filters (A), define categorical variables and assign values (B), 

define and assign custom groups (C), and define hierarchical 

schema amongst objects by assigning objects as hosts (D). 
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B

A

B

C

Figure 9. An enhanced 3D scene facilitates 

detailed curation and stores publication-ready 

visualizations. (A) 3D renderings of objects can 

be generated from the object list and are 

displayed in a featureful 3D scene. (B) Double-

clicking in the 3D scene focuses on the 

corresponding 2D location in the main window, 

allowing users to navigate to sections for curation. 

Here, a disconnected part of an object identified in 

the 3D scene is rapidly uncovered on the 2D 

section, allowing users to curate more finely the 

object’s segmentations. (C) The updated 3D 

scene offers users features that organize objects 

in an automated fashion. Here, all objects in the 

3D scene have been organized along a single 

axis, providing a visual overview of all meshes. 

Objects can be moved and rotated interactively 

and their attributes (color, opacity, etc.) can be 

altered. Scenes can be exported, saved, and re-

loaded at a later time, allowing users to produce 

publication-ready figures and store scenes with 

series data.
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Figure 10. Schematic of PyReconstruct annotation data. Whereas legacy Reconstruct stored 

annotation data as multiple, non-canonical XML files, PyReconstruct stores annotation data locally as 

a single JSON-structured file (suffixed with .jser) loaded as a Python dictionary and edited using built-

in modules or through PyReconstruct’s API. Series-wide data is held in a “Series” key, section data in 

a “Section key”, and series history in a “Log” key. The top-level key “Sections” maps to a list of section 

dictionaries with keys representing contour, flag, transformation data, etc. “Contours” is associated 

with a list of contours, which hold trace information. Traces are lists of trace attributes, such as trace 

color, points, visibility, etc. (Abbreviations: Align alignment, Code series code, Img Dir image directory, 

Tforms transforms, BC brightness/contrast profiles, Thick thickness, Mag pixel magnification, Img 

image file path.)  
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