'.) Check for updates

J Physiol 0.0 (2025) pp 1-13 1

TOPICAL REVIEW
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Abstract figure legend Illustration of the sequence of events leading to the sustained enhancement of presynaptic vesicle
cycling during long-term potentiation (LTP). At time 0, all presynaptic axonal boutons contain a pool of non-docked
vesicles and docked synaptic vesicles tethered to the presynaptic active zone. A particular presynaptic axonal bouton
may or may not contain a mitochondrion or small dense core vesicle. Synapses comprise nascent zones with postsynaptic
densities but no presynaptic vesicles, and active zones with both. The synaptic cleft spans both nascent and active zones.
By 5 min after the induction of LTP, small dense core vesicles are recruited to the presynaptic membrane. Docked vesicles
are reduced in number reflecting release. By 30 min, there are fewer vesicles overall, more coated pits, and small dense
core vesicles are at their pre-LTP locations along the axons. In parallel, docked vesicles are recruited to regions of previous
nascent zones converting them to active zones further enhancing the possibility of release. Two hours after the induction
of LTP, the axonal bouton has enlarged and new nascent zones have appeared and are ready for new LTP. The docked
vesicles are more tightly tethered and clustered at active zone release sites, suggesting a sustained elevation in presynaptic
release during LTP.
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Abstract Long-term potentiation (LTP) is a widely studied form of synaptic plasticity engaged
during learning and memory. Here the ultrastructural evidence is reviewed that supports an
elevated and sustained increase in the probability of vesicle release and recycling during LTP.
In hippocampal area CA1, small dense-core vesicles and tethered synaptic vesicles are recruited
to presynaptic boutons enlarging active zones. By 2 h during LTP, there is a sustained loss of
vesicles, especially in presynaptic boutons containing mitochondria and clathrin-coated pits.
This decrease in vesicles accompanies an enlargement of the presynaptic bouton, suggesting
they supply membrane needed for the enlarged bouton surface area. The spatial relationship of
vesicles to the active zone varies with functional status. Tightly docked vesicles contact the pre-
synaptic membrane and are primed for release of neurotransmitter upon the next action potential.
Loosely docked vesicles are located within 8 nm of the presynaptic membrane. Non-docked
vesicles comprise recycling and reserve pools. Vesicles are tethered to the active zone via filaments
composed of molecules engaged in docking and release processes. Electron tomography reveals
clustering of docked vesicles at higher local densities in active zones after LTP. Furthermore, the
tethering filaments on vesicles at the active zone are shorter, and their attachment sites are shifted
closer to the active zone. These changes suggest more vesicles are docked, primed and ready for
release. The findings provide strong ultrastructural evidence for a long-lasting increase in release
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probability following LTP.
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Introduction

Long-term potentiation (LTP) is the persistent
strengthening of synapses after a brief high-frequency
stimulation and is widely accepted as a cellular correlate
of learning and memory (Bliss & Gardner-Medwin, 1973;
Nicoll, 2017). Within minutes after the induction of
LTP, new receptors are inserted into the postsynaptic
membrane. The resulting increase in the excitatory
postsynaptic potential is immediate and can persist for
hours in vitro or days to months in vivo (Bliss, 1993;
Bliss & Gardner-Medwin, 1973; Bliss & Lomo, 1973;
Capocchi et al.,, 1992; Larson & Lynch, 1986; Nguyen &
Kandel, 1997; Staubli & Lynch, 1987). Quantal content is
also increased soon after LTP induction and reflects an
increase in the number of presynaptic vesicles that release
neurotransmitter (Kullman & Nicoll, 1992; Liao et al,,
1992; Malinow & Tsien, 1973; Stevens & Wang, 1994;
Stricker et al., 1996). This increase in release probability
is sustained several hours following LTP (Sokolov et al.,
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2002), concurrent with postsynaptic growth and spine
enlargement (Bourne & Harris, 2011). One might expect
that the enhanced probability of release would involve
increasing the number of vesicles docked and primed for
neurotransmitter release. However, 2 h after induction
of LTP, the total number of vesicles per presynaptic
bouton is markedly decreased relative to boutons that
received control stimulation only (Smith et al., 2016).
These findings raise the question of whether an altered
structure of docking and priming molecules leads to local
clustering of vesicles that would elevate the probability of
release following LTP. Here the ultrastructural evidence is
reviewed that the presynaptic vesicle cycle is altered in a
way consistent with elevated release and recycling that is
sustained for at least 2 h after the induction of LTP.

Homeostatic structural synaptic plasticity during LTP

Homeostatic structural synaptic plasticity has been
demonstrated 2 h after the induction of LTP in the young
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adult rat hippocampus (Bourne & Harris, 2011; Bell et al.,
2014). In this work, LTP was induced in hippocampal
slices by a saturating theta-burst stimulation delivered
to one electrode while only test pulses were delivered to
a separate control electrode in the same slice (Fig. 1A
and B). Slices were then fixed in mixed aldehydes using
our rapid microwave-enhanced protocol to produce high
quality preservation of synapses (Fig. 1C). The synaptic
surface area was estimated by measuring the region of the
axon-spine interface occupied by the postsynaptic density
(PSD). The size of the PSD areas remained constant
across the first 30 min after induction of LTP but was
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significantly enlarged by 2 h (Fig. 1D). In contrast, LTP
stalls the small spine outgrowth resulting from control
stimulation (Fig. 1E). The density of large spines was not
altered by control or LTP conditions, and thus synapse
enlargement is likely restricted to existing large spines
(Chirillo et al., 2019). Consequently, the total PSD area
supported per unit length of dendrite remained constant
after LTP (Fig. 1F). Together these findings illustrate a
homeostatic balance in total synaptic weight and control
activation stimulates spine outgrowth while LTP enlarges
synapses at the expense of new spine formation in adult
animals (Fig. 1G).
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Figure 1. Homeostatic synaptic plasticity during LTP in the young adult rat hippocampus

A, positioning of stimulating electrodes and sample locations where serial sections were obtained for electron
microscopy (EM) from the control (blue) and LTP (red) sites. The stimulating electrode that induced LTP was
alternated between the CA3 (left) and the subicular (right) side of the recording electrode (black arrow). B, LTP
was induced by theta-burst stimulation (TBS; 8 trains at 30 s intervals of 10 bursts per train at 5 Hz with 4 pulses
in each burst at 100 Hz), and the control side received test pulses at the same rate as LTP test pulses of 1 per
2 min over the course of the experiment. C, illustration of the excellent ultrastructure from an adult hippocampal
slice using our rapid microwave-enhanced fixation protocol (Jensen & Harris, 1989). This example is from a P61
rat hippocampus in the 30 min control condition. Red lines indicate example postsynaptic densities (PSD). D, the
average size of PSD areas of synapses enlarged during LTP; (E) while the increase in small-spine density seen under
control conditions was absent during LTP. £, consequently, the total PSD area after LTP induction equalled that in
control conditions. G, together these findings resulted in a homeostatic balance in total synaptic weight per unit
length of dendrite. A-D, F and G, are adapted from Bourne & Harris (2011); E is adapted from Bell et al. (2014).
*P < 0.05; ***P < 0.001.
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Changes in presynaptic boutons during LTP

Synapses on dendritic spines in s. radiatum of
hippocampal area CA1 comprise Schaffer collateral axons
from the ipsilateral area CA3, commissural axons from
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the contralateral CA3 axons, and longitudinal projections
from neighbouring components of the ipsilateral
hippocampus. ~ Three-dimensional  reconstructions
illustrate the non-parallel trajectories of these axons
(Fig. 2A and B) that give rise to stimulation of independent

Figure 2. CA3 axons that synapse in s. radiatum of hippocampal area CA1

A, central EM and 3D reconstructions of these axons illustrating their non-parallel trajectories that give rise to
stimulation of independent synapses at a separation between the electrodes greater than 200 pm using the
protocol shown in Fig. 1. B, illustration showing that only 50% of the presynaptic boutons along these axons
contain mitochondria (dark grey structures) in the perfusion-fixed hippocampus, in vivo. (A and B are adapted
from Shepherd & Harris, 1998). C—F, reconstructed axons from the control (Con) conditions (C, E) and 30 min (D)
or 2 h (F) after induction of LTP in the same slice. Axon, pale blue; vesicles, green spheres; mitochondria (mito),

fuchsia; PSDs, red. Adapted from Bourne et al. (2013).

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.
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synapses when the two stimulating electrodes are
separated by more than 200 pm (Bourne et al., 2013;
Shepherd & Harris, 1998; Smith et al., 2016). Only about
50% of the presynaptic boutons along these axons contain
mitochondria in control or LTP conditions (Fig. 2C-F)
(Bourne et al., 2013; Smith et al., 2016). Related to the
stalled spine outgrowth, a specific population of single
synaptic boutons is lower after LTP (Fig. 3A4), whereas the
frequency of multisynaptic (Fig. 3B) and non-synaptic
(Fig. 3C) boutons is not altered after LTP relative to
control stimulation (Fig. 3D-F). These outcomes suggest
that multisynaptic boutons are more stable, and that
the spines are not lost from pre-existing single synaptic
boutons. Instead, the stalled spine outgrowth results
in the formation of fewer presynaptic boutons during
LTP in adult hippocampal slices. The outcomes during
development are different in that LTP promotes new spine
outgrowth and related presynaptic plasticity (Ostroff et al.,
2018; Smith et al., 2016; Watson et al., 2016). That is a
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story for other reviews (Harris, 2020a, b). Here we will
focus on the outcomes in young adult hippocampus.

Sustained decrease in the number of presynaptic
vesicles during LTP

In addition to the loss of presynaptic boutons, there is
a substantial drop in the number of vesicles found in
the remaining boutons (Bourne et al., 2013). This over-
all reduction affects both the docked and non-docked
vesicle pools at 30 min and is sustained in the non-docked
vesicle pool for at least 2 h (Fig. 4). The drop in
docked and non-docked vesicle number is greatest in
boutons that contain clathrin-coated pits, suggesting there
is an elevated release and recycling of vesicles during
LTP (Fig. 5). Furthermore, the drop in presynaptic
vesicles is greatest in presynaptic boutons that contain a
mitochondrion, suggesting an elevated requirement for
ATP and local regulation of calcium in the boutons with

Figure 3. The stalled spine outgrowth results in fewer single synaptic boutons (SSBs)

Aa-Ca, EM and b, 3D reconstructions of SSB A, multisynaptic bouton (MSB) B, and non-synaptic bouton (NSB) (C).
ax, axon; sp, spine. D, central EM and E, sampling brick across serial EM volume to identify and include boutons
contained within or touching the green surfaces while excluding those touching the red surface. F, brick analyses
revealed no differences at 30 min, but fewer SSBs at 2 h after induction of LTP (P < 0.05) with no significant
changes in MSBs or NSBs. Scale bar in Ca is for Aa—Ca and cube in Cb is for Ab—Cb at 0.5 pm per side, 0.125 pm?.
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enhanced vesicular release after LTP (Fig. 6; Smith et al.,
2016).

Vesicle filling of presynaptic nascent zones enlarges
the active zone during LTP

The ultrastructure of the presynaptic active zone is
defined by the location where vesicles dock and release
neurotransmitter (Neher & Brose, 2018). For excitatory
synapses on dendritic spines in the mammalian brain,
this region is associated with the PSD (Fig. 7A). There
is another region defined by the presence of the PSD but
absence of presynaptic vesicles that we term the nascent
zone (Fig. 7B-E). Presynaptic vesicles are tethered to
small dense core vesicles in the CAl excitatory axons
(Fig. 7F and G) (Sorra et al., 2006). Within 5 min
after the induction of LTP in hippocampal area CAl,
small dense core vesicles are recruited to the presynaptic
bouton (Fig. 7F and G). Occasionally, the small dense
core vesicles can also be found docked to the edges
of the active zone area, where they could guide the
tethered vesicles to the correct location to enlarge the
active zone (Fig. 7H). The dark core of the small dense

J Physiol 0.0

core vesicles contains cell adhesion molecules, including
neurexin, which upon release would anchor the post-
synaptic glutamatergic receptors (AMPA) to the previous
nascent zone area, thereby creating nanocolumns in the
right position to enlarge the active zone (Haas et al., 2018;
Harris et al., 2024).

Importantly, the surface of the dense core vesicle
membrane contains the scaffolding proteins (piccolo and
bassoon) needed to tether presynaptic vesicles to docking
sites (Dresbach et al., 2006; Zhai et al., 2001; Ziv & Garner,
2004). Interestingly, the dimensions of the membrane
surface area of the small dense core vesicles would be
sufficient to convert an entire nascent zone to an active
zone (Fig. 7I). By 30 min after the induction of LTP, the
amount of the postsynaptic density attributed to nascent
zones decreases (Fig. 7]), suggesting that the vesicles
recruited by the small dense core vesicles could have
served immediately to enlarge the presynaptic active zone,
and enhance the probability of release. Thus, the sub-
sequent enlargement of the postsynaptic density described
in Fig. 1D above is silent because that growth is primarily
attributable to the addition of nascent zones, having no
presynaptic vesicles (Fig. 7K and L).
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Figure 4. Sustained decrease in number of presynaptic vesicles during LTP

A, EM and B, 3D reconstruction of a dendritic spine (sp, yellow) and presynaptic bouton (ax) with the docked
vesicles (blue), vesicles in the pool (green), and PSD (red). C, average number of docked vesicles for each condition
(black lines) with distribution from individual boutons (n = number of boutons in each condition). D, decrease in
the number of docked vesicles per presynaptic bouton at 30 min after induction of LTP relative to control values (P
< 0.01). E, average number of non-docked vesicles (black lines) for each condition with distribution from individual
boutons. F, by 2 h after LTP induction, the vesicle pool was significantly smaller relative to control (P < 0.01).
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Increased local density of tightly docked vesicles in
active zones during LTP

We wondered how to reconcile the overall decrease in
presynaptic vesicles with the enhanced probability of
release associated with LTP. To answer this question,
regions of presynaptic active zones that had at least
one docked vesicle were targeted for visualization with
electron tomography (Jung et al., 2021). The exact position
of vesicles in the active zone varies with functional status
(Neher & Brose, 2018). Tightly docked vesicles touch the
presynaptic membrane and are primed for the release of
neurotransmitter. Loosely docked vesicles (less than 8 nm)
and non-docked vesicles (greater than 8 nm) comprise
recycling and reserve pools. Electron tomography reveals
precise positions of the docked presynaptic vesicles and
their filamentous tethers composed of molecules involved
in docking, priming and release (Neher & Brose, 2018).
Tightly docked vesicles are clustered producing local

A Mito
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increases in their density during LTP (Fig. 8A-F), whereas
the loose or non-docked vesicle densities (Fig. 8G-J)
are unchanged relative to control stimulation (Fig. 8K).
All vesicles congregating within 45 nm above the active
zone have tethering filaments attached to the presynaptic
membrane (Fig. 8C, D and L-0). The tethering filaments
are shorter for both tight and loosely docked vesicles after
LTP (Fig. 8P). In addition, the vesicle attachment sites of
the tethering filaments shift downward towards the pre-
synaptic membrane and horizontally towards the docking
site resulting in shorter filaments. These alterations would
stabilize docked vesicles at the active zone and facilitate
formation of SNARE complexes. Shortened tethering
filaments on the loosely or non-docked vesicles would
enhance recruitment of vesicles to the docking sites at
the active zone and increase their readiness for release
(Cole & Reese, 2023; Cole et al., 2016b). In summary,
the shortening of tethering filaments is likely stabilizing
more vesicles in the primed state long after the induction
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Figure 5. Vesicle drop during LTP is greatest in boutons containing a mitochondrion

A and B, representative vesicle composition in presynaptic boutons (A) containing mitochondria (dark blue) or
(B) without mitochondria from the control and LTP conditions. C—F, both docked and non-docked vesicles had
greater drops across synapses of all PSD areas for boutons with mitochondria (C, D) versus no mitochondrion (£,

F). Adapted from Smith et al. (2016).
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of LTP. Primed vesicles comprise the readily releasable
pool, releasing neurotransmitter upon the next action
potential. Hence, stabilizing vesicles in the primed state
could contribute to the enhanced probability of release
occurring several hours after LTP induction.
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Figure 6. The number of vesicles was substantially reduced in boutons containing clathrin coated pits

(CCP)

A-D, EM and 3D reconstructions of presynaptic vesicles (green), CCPs (orange), PSDs (red) and spines (yellow)
from control (A, B) and 2 h LTP (C, D) conditions. £ and F, graphs of vesicle counts in presynaptic boutons with and
without one or more CCPs. G and H, statistically significant reductions (*P < 0.05, **P < 0.01) in docked vesicles
and vesicle pool numbers in boutons with (+CPP) or without (-CCP) one or more CCPs.
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Involvement of presynaptic vesicles in axon building

When Heuser and Reese first discovered that presynaptic
vesicles are recycled locally at the neuromuscular junction,
they opened the field to learn how axons throughout
the nervous system regulate synaptic transmission. In

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.
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A, active zone (AZ, red) with docked (royal blue arrow), non-docked (white arrow), and reserve pool (green
arrow) vesicles, at a PSD (red). B and C, nascent zone (NZ, aqua) has a PSD but no presynaptic vesicles. D and
E, 3D reconstructions of the synapse illustrated in A-C. F and G, 3D reconstructions of axons in s. radiatum of
hippocampal area CA1 illustrating their composition of synaptic vesicles (light green spheres), dense core vesicles
(DCV), mitochondria (mito), and multivesicular body (MVB). These reconstructions are from perfusion fixed brain
and illustrate neighbouring single-synaptic (SSB), multisynaptic (MSB), and non-synaptic (NSB) boutons along single
axons. H, EM illustrating synaptic vesicles that are tethered (green arrows) to (/) a dense core vesicle (DCV). /, DCV
at the edge of an AZ. J DCVs are recruited from inter-bouton regions to synaptic boutons at 5 min after TBS (n
= number of synapses). K, plot of the number of DCVs that would be needed to convert a NZ to AZ by filling it
with the tethered docked vesicles versus the number of NZs in the control or LTP conditions that would be fully
converted to AZ if a DCV were to be recruited with tethered vesicles. L, NZ area decreases by 30 min after LTP
induction. M, NZ size is re-elevated by 2 h after LTP induction. N, NZ recovery at 2 h during LTP is greatest on spines
with the largest AZ areas (Perf: in vivo controls). (Adapted from Bell et al., 2014; Harris et al., 2024; Sorra et al.,
2006.)

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.
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hippocampal area CA1 we have learned that the pre-
synaptic axonal boutons are highly diverse, ranging in
total vesicle number from a few vesicles to more than
2000 per bouton. Furthermore, the number of docked
vesicles per bouton is also highly variable ranging from
a few to more than 50 per active zone. Unlike the
neuromuscular junction, where virtually all presynaptic
boutons contain local mitochondria, only about 50% of
presynaptic axonal boutons contain mitochondria in area
CAL s. radiatum (Shepherd & Harris, 1998; Smith et al.,
2016). Consistent with the vesicle hypothesis, there is an
elevation in clathrin-coated pits and vesicles in boutons
with the greatest drop in total vesicle number after LTP,
an effect that subsides with time. However, the vesicle
cycle takes about 1 min from release to recycling (Sudhof,
1995, 2004). Hence, it appears that there are hundreds
to thousands of extra vesicles in many of the presynaptic
boutons that are not necessarily part of the release or
recycling pool. Evidence is accumulating that the pre-
synaptic boutons are enlarged after LTP (Chereau et al.,
2017), in proportion to the amount of membrane that
would be contained in the lost pool of presynaptic vesicles
during LTP (pre-published observations, Garcia et al.,
2024). Perhaps not all vesicles are engaged in release and
recycling, but some instead provide the membrane needed
for presynaptic bouton enlargement during LTP.

J Physiol 0.0

Relevance of aldehyde fixation

In the past, rapid freezing and freeze-substitution have
been used to capture vesicle dynamics during synaptic
transmission (Cole et al.,, 2016a; Heuser et al., 1979;
Imig et al., 2014; Watanabe et al., 2013, 2014; Zampighi
et al., 2008, 2014). The ultrastructural synaptic plasticity
reviewed here was obtained from microwave-enhanced
aldehyde fixation of brain slices that likely occurs over
seconds rather than the milliseconds achieved with
freezing (Jensen & Harris, 1989). In cultured hippocampal
neurons, aldehyde fixation does not alter the probability of
vesicular release (Rosenmund & Stevens, 1997). Tethering
filaments are preserved in both aldehyde-fixed and rapid
frozen synapses (Cole, & Reese, 2023; Cole et al., 2016b;
Harlow etal., 2001; Jung et al., 2016). Relative to perfusion
fixation in vivo, the effects of slicing on presynaptic release
are resolved within an hour of incubation in vitro (Fiala
et al., 2003), while the LTP effects were measured after
approximately 6 h in vitro. Any other effects related
to the time in vitro were controlled for by test pulse
stimulation in the same slice. Hence, we conclude that
these observations faithfully reflect structural synaptic
plasticity that underlies a sustained elevation in the
probability of release at 2 h after the induction of
LTP.

K 10 tight loose nondocked
* P=0.6 P=0.3

o
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Figure 8. Effects of LTP on the local density of tethered and docked presynaptic vesicles

A-J, tightly docked (purple), loosely docked (turquoise) or non-docked (light blue) vesicles with molecular tethering
filaments (yellow). C and D, side view of three-dimensional tomogram illustrates presynaptic membrane surface
(silver) with tight and loose docked vesicles and tethering filaments. £-J, unbiased sampling frames to compute
local cluster densities for tight (£, F) and loose or non-docked (/, J) vesicles. K, the density of tightly docked vesicles,
but not loosely or non-docked vesicles, increases in local clusters after LTP. L-P, the length of the tethering filaments
(yellow) for both tight (L, M) and loosely docked (N, P) vesicles was shortened at 2 h after LTP induction. (Adapted

from Harris et al., 2024; Jung et al., 2021.)

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.
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Future tomography in large image volumes

Current EM tomographic field size limits investigation
to small parts of the synapse. Presynaptic mitochondria
support greater vesicular release at tonic versus phasic
synapses (Brodin et al., 1999). Mitochondria-containing
boutons sustain a greater loss of synaptic vesicles
during LTP than boutons lacking mitochondria (Smith
et al, 2016). None of our EM tomographic volumes
are currently large enough to capture presynaptic
mitochondria, hence the outcomes reviewed here
likely include boutons with and without mitochondria
diluting mitochondria-specific effects. Combining EM
tomography with wide field scanning electron micro-
scopy is needed to elucidate nanoscale effects of synaptic
plasticity across whole synapses and networks (Kuwajima
et al,, 2013). Similarly, extending this work to synapses
of all types in local and broad networks will require
tomography at a connectomics scale to understand the
time course and network effects of altered presynaptic
vesicular release and recycling during learning, memory
and disease states that disrupt normal function.
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