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An essential tool for understanding the spatiotemporal orga-
nization of biological systems, microscopy is nearly syn-
onymous with biology itself. Microscopes suffer from the 

so-called ‘eternal triangle of compromise’, which dictates that image 
resolution, illumination intensity (and consequent sample dam-
age) and imaging speed are all in tension with one another. In other 
words, it is impossible to optimize one parameter without compro-
mising another. This is particularly problematic for point-scanning 
systems, for example scanning electron and laser scanning confo-
cal microscopes, for which higher-resolution images require higher 
numbers of sequentially acquired pixels to ensure proper sampling, 
thus increasing the imaging time and sample damage in direct 
proportion to the image resolution. Nonetheless, point-scanning 
systems remain perhaps the most common imaging modality in 
biological research due to their versatility and ease of use. Thus, 
the ability to effectively supersample undersampled point-scanning 
microscope images could be transformative.

Deep learning (DL) has been extensively used to ‘supersample’ 
the pixels in computationally downsampled digital photographs1–4. 
For microscopy, DL has long been established as an invaluable 
method for image analysis and segmentation5. More recently, 
DL has been used with spectacular results in restoring relatively 
low signal-to-noise ratio (SNR) or low resolution fluorescence 
microscopy acquisitions6–10. DL has also been used for accel-
erating single-molecule localization microscopy10–12. Similarly, 
low-resolution (LR) or low SNR electron microscopy (EM) data have 
been restored using DL8,13–16. Finally, DL has been used to restore 
blurry, low optical resolution images to sharp, high ‘optical’ resolution  

images via either supervised training of fluorescence samples10,17,18, 
or via more generalizable deconvolution algorithms19,20.

Increasing the xy pixel resolution of real-world undersampled 
point-scanning microscope images presents a unique set of both 
challenges and opportunities. Undersampling point-scanning 
microscope images in the xy plane while maintaining a constant 
pixel dwell time increases the imaging speed and decreases the sam-
ple damage, in addition it results in not only a lower pixel resolution 
image, but also a lower SNR, since the total photons or electrons 
detected are in this case proportional to the number of pixels col-
lected. Thus, restoring undersampled point-scanning microscope 
images with DL requires simultaneous supersampling and denois-
ing, a challenging task that requires large amounts of high-quality 
training data.

To accomplish this, we developed a DL-based training work-
flow that uses a new ‘crappifier’ that simultaneously injects noise 
while downsampling the pixel resolution of high-resolution (HR) 
training data. This crappifier circumvents the need to acquire 
real-world image pairs for training, which is difficult and expensive 
for large datasets, and is practically impossible for live samples with 
quickly moving structures (for example, subcellular organelles). 
These crappified images are then paired with their HR counter-
parts to train models that can successfully supersample and denoise 
real-world undersampled, noisy images. We found crappifiers using 
additive-Gaussian noise performed best for training models that 
effectively restore real-world images. We also found that DL restored 
fluorescence time-lapse images of fast-moving subcellular organ-
elles suffer from flickering artifacts when restoring very LR, low 
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SNR images. To address this, we developed a ‘multi-frame’ approach 
for high-spatiotemporal resolution time-lapse data, which reduces 
flickering artifacts and generates more accurate super-resolution 
images by using information from neighboring video frames in 
time-lapse acquisitions. Thus, our point-scanning super-resolution 
(PSSR) software provides a practical and powerful framework for 
simultaneously increasing the sensitivity, pixel resolution, ‘optical’ 
resolution and acquisition speed of any point-scanning imaging 
system.

Results
Three-dimensional electron microscopy (3DEM) is a powerful 
technique for determining the volumetric ultrastructure of tis-
sues. In addition to serial section EM (ssEM)21 and focused ion 
beam–scanning EM (FIB–SEM)22, one of the most common tools 
for high-throughput 3DEM imaging is serial blockface scanning 
EM (SBFSEM)23, wherein a built-in ultramicrotome iteratively cuts 
ultrathin sections off the surface of a blockface after it is imaged 
with a scanning electron probe. This technology facilitates relatively 
automated, high-throughput 3DEM imaging with minimal post-
acquisition image alignment. Unfortunately, higher electron doses 
cause sample charging, which renders the sample too soft to sec-
tion reliably (Supplementary Video 1). Furthermore, the extremely 
long imaging times and large file sizes inherent to HR volumetric 
imaging present a substantial bottleneck. For these reasons, most 
3DEM datasets are acquired with sub-Nyquist pixel sampling (for 
example, pixel sizes ≥4 nm), which precludes the reliable detection 
or analysis of smaller subcellular structures, such as roughly 35-nm 
presynaptic vesicles. While low-pixel resolution 3DEM datasets can 
be suitable for many analyses (for example, cellular segmentation), 
the ability to mine targeted regions of pre-existing large datasets for 
higher-resolution ultrastructural information would be extremely 
valuable. Unfortunately, many 3DEM imaging approaches are 
destructive, and HR ssEM can be slow and laborious. Thus, the abil-
ity to increase the pixel resolution of these 3DEM datasets post hoc 
is highly desirable.

Frustrated by our inability to perform SBFSEM imaging with 
the desired 2-nm pixel resolution and SNR necessary to reliably 
detect presynaptic vesicles, we decided to test whether a deep 
convolutional neural net model (PSSR) trained on 2-nm-pixel 
HR images could ‘super-resolve’ 8-nm-pixel LR images. We also 
wished to enable imaging with equal pixel dwell times as the HR 
images, facilitating a 16× increase in imaging speed, but at the cost 
of a 16× decrease in detected electrons, greatly lowering the SNR. 
Thus, our PSSR model would need to simultaneously increase the 
SNR and pixel resolution of the LR images. To train a DL model for 
this purpose, a very large number of perfectly aligned HR and LR 
image pairs would be required. However, EM imaging of ultrathin 
sections results in nonlinear distortions that are impossible to pre-
dict or control. Therefore, it is extremely difficult and sometimes  
impossible to perfectly align two sequential acquisitions of the  
same field of view. Furthermore, sequentially acquiring a large 
enough number of images for training data is time intensive and 
cost prohibitive. Thus, instead of manually acquiring HR and  
LR image pairs for training, we opted to generate training data by 
computationally ‘crappifying’ HR images to be paired with their  
HR counterparts.

We hypothesized that to simulate real-world, low-pixel resolu-
tion acquisitions with lower electron doses, our ‘crappifier’ must 
add noise while also decreasing the pixel resolution. To create 
a suitable crappifier, we performed an ablation study where we  
compared the performance of models trained with image pairs  
generated with different crappifiers, while all other factors were 
kept constant (Fig. 1a–e and Methods). Specifically, we compared 
models crappified with no noise (that is, downsampling only), 
Poisson noise, Gaussian noise (independently and identically  

distributed) and additive-Gaussian-distributed noise, respectively. 
Among all models trained with crappified pairs, additive Gaussian 
yielded the best results. The additive-Gaussian model also outper-
formed the model trained with manually acquired training pairs 
(real world) across all metrics. We further compared additive 
Gaussian with ‘additive Gaussian (roughly 80×)’, where we used 
approximately 80× more training data, which did not substantially 
increase the peak-signal-to-noise ratio (PSNR) or structural simi-
larity (SSIM) measurements, but did further increase the resolution 
as measured by Fourier ring correlation (FRC) analysis. Notably, it 
would have taken >480 h of imaging time and cost >US$16,000 to 
acquire the same amount of real-world training data pairs as was 
used in our 80× additive-Gaussian model. But by using pre-existing 
gold standard HR data that had already been acquired for separate 
experimental purposes, we were able to generate training data in 
only 2 h, at a cost of only US$16 (Fig. 1f). This highlights the use 
of the crappifier method, which facilitates the generation of much 
larger amounts of training data at a fraction of the cost. Therefore, 
for our training data we ‘crappified’ approximately 130 GB of train-
ing data from 2-nm-pixel transmission-mode scanning electron 
microscope (tSEM24) images of 40-nm ultrathin sections of rat 
CA1 hippocampal tissue. We then trained our image pairs with  
a ResNet-based U-Net architecture (Fig. 2a and Extended Data  
Fig. 1: see Methods and tables for full details). Using a mean  
squared error (MSE) loss function yielded excellent results as  
determined by visual inspection as well as PSNR, SSIM and FRC 
analyses. Overall, the PSSR-restored images from our semisyn-
thetic pairs contained more high-frequency information than our 
LR images, and yet displayed less noise than both our LR and HR 
images, making it easier to identify smaller objects such as 35-nm 
presynaptic vesicles (Fig. 2b,c).

We next tested whether our PSSR model was effective on 
real-world LR acquisitions. DL-based models are notoriously sensi-
tive to variations in training versus testing data, usually precluding 
the use of models generated from training images acquired in one 
condition on images acquired in another (that is, data generated 
using a different sample preparation technique, type or on a dif-
ferent microscope). Similarly, there is a risk that models trained on 
artificially injected noise will learn how to remove artificial noise 
yet fail to remove real-world noise.

Our training images were generated from 40-nm sections of  
rat CA1 tissue acquired with a tSEM detector. But for our testing 
data, we acquired HR and LR images of 80-nm sections of den-
tate gyrus tissue from a mouse brain, imaged with a backscatter  
detector. Based on several metrics including PSNR, SSIM, FRC  
(Fig. 2b,c), NanoJ-SQUIRREL error mapping analysis (Extended 
Data Fig. 2)25, visual inspection and comparison to the block- 
matching and 3D filtering (BM3D) denoising method (Extended 
Data Fig. 3)26, we found PSSR successfully restored real-world LR 
images (Fig. 2c). Thus, our PSSR model is effective for real-world 
data, and is not restricted to data acquired in the exact same fashion 
as the training set.

We next asked whether we could sufficiently restore 8-nm 
SBFSEM datasets to 2 nm using PSSR, since high-quality 2-nm 
SBFSEM imaging is currently difficult or impossible for us to 
achieve. Using the same PSSR model described above we were able 
to restore an 8-nm-pixel SBFSEM 3D dataset to 2 nm (Fig. 3a and 
Supplementary Video 2). Our PSSR model also worked very well on 
mouse, rat and fly samples imaged on four different microscopes in 
four different laboratories (Fig. 3a–d). In addition to our SBFSEM 
and SEM imaging systems, PSSR processing appeared to restore 
images acquired on a Zeiss FIB–SEM (from the Hess laboratory at 
Janelia Farms, Fig. 3c and Supplementary Video 3) and a Hitachi 
Regulus field emission–SEM (FE–SEM) (from the Kubota labora-
tory at National Institute for Physiological Sciences, Fig. 3d). PSSR 
processing also performed well on a 10 × 10 × 10 nm3 resolution 
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Fig. 1 | Evaluation of crappifiers with different noise injection on EM data. a, Different crappifiers applied to HR, high SNR images, including ‘no noise’ 
(no added noise, downsampled pixel size only), Poisson, Gaussian and additive-Gaussian noise. The real-world acquired LR (LR acquired) and HR (ground 
truth) images are also shown for comparison. Each training set contains 40 image pairs, achieving similar results. b, Visualized restoration performance of 
PSSR models that were trained on each different crappifier (no noise, Poisson, Gaussian and additive Gaussian), as well as a model trained with manually 
acquired LR versions of the same samples used for the HR semisynthetic training data (real-world training data). Results from a model that used the 
same crappifier as additive Gaussian, but with roughly 80× more training data (additive Gaussian (roughly 80×)) are also displayed. LR input and ground 
truth of the example testing regions of interest (ROI) are also shown. Scale bars, 0.4 μm. c–e, Experiments were repeated with 8–16 images, achieving 
similar results. PSNR (c), SSIM (d) and resolution as measured by FRC analysis (e) (PSNR and SSIM, n = 8 independent images; FRC resolution, n = 16 
independent images). f, A table that compares the devoted time, cost and difficulty level between experiments with manually acquired training pairs and 
experiments using our crappification method. All values are shown as mean ± s.e.m. P values are specified in the figure for 0.0001 < P < 0.05. *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001, NS, not significant; two-sided paired t-test.
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FIB–SEM fly brain dataset, resulting in a 2 × 2 × 10 nm3 resolution 
dataset with higher SNR and resolution (Fig. 3b). Thus, PSSR can 
provide 25× super-resolution with useful results, effectively increas-
ing the lateral resolution and speed of FIB–SEM imaging by a factor 
of at least 25×.

The main concern with DL-based image processing is the pos-
sibility of false positives (also known as ‘hallucinations’)5,8,27,28.  
To further test the accuracy and use of the PSSR output within a  
more concrete, biological context, we next randomized bilinear 
interpolated (LR-bilinear), LR-PSSR and HR images, then distrib-
uted them in a blinded manner to two human experts for manual 
segmentation of presynaptic vesicles, which are difficult to detect 
with 8-nm pixel resolution images (see Supplementary Notes and 
Methods for full details). We found the LR-PSSR segmentation was 
notably more accurate than the LR-bilinear (Fig. 3e). While the 
LR-PSSR output substantially reduced false negatives, the LR-PSSR 
output had a slightly higher number of ‘false positives’ than the 
LR-bilinear. However, the variance between the LR-PSSR and HR 
results was similar to the variance between the two expert human 
results on HR data (Fig. 3e), which is the current gold standard. 
Notably, we found PSSR images were much easier to segment: a 
major bottleneck for analyzing 3DEM datasets (Supplementary 
Video 4).

Similar to SBFSEM, laser scanning confocal microscopy also suf-
fers from a direct relationship between pixel resolution and sample 
damage (that is, phototoxicity/photobleaching)29. This can be a 
large barrier for cell biologists who wish to study the dynamics of 
smaller structures such as mitochondria, which regularly undergo 
fission and fusion but also show increased fission and swelling in 
response to phototoxicity (Supplementary Video 5 and Extended 
Data Fig. 4).

Laser scanning microscopy also suffers from an inverse relation-
ship between pixel resolution and imaging speed, making live-cell 
imaging of faster processes (for example, organelle motility in neu-
rons) challenging if not impossible. Nonetheless, Nyquist sampling 
criteria often necessitates the use of smaller pixels to resolve smaller 
structures—this is particularly true for higher-resolution imaging 
methods that depend on postprocessing pixel reassignment and/or 
deconvolution. Thus, we sought to determine whether PSSR might 
enable acquisitions with decreased pixel resolution to optimize  
the imaging speed and SNR of live laser scanning confocal micro-
scope imaging. To train a DL model using image pairs of mitochon-
dria in live cells is virtually impossible because they are constantly 
moving and changing shape. Thus, our ‘crappification’ approach 
is particularly useful generating training data for live-cell imaging 
datasets.

To generate our ground truth training dataset, we used a Zeiss 
laser scanning confocal microscope (LSM) 880 in Airyscan mode 
(Methods). Similar to our EM model, an ablation study that com-
pared crappifiers with different noise distributions was conducted 
(Extended Data Fig. 5 and Methods). We found the crappifier 
injected with Salt&Pepper and additive-Gaussian noise yielded 
overall best performance. For the real-world LR test data, we 

acquired images in confocal mode at 16× lower pixel resolution 
with a 2.5 AU pinhole on a photomultiplier (PMT) confocal detec-
tor, without any additional image processing. To ensure minimal 
phototoxicity, we also decreased the laser power for our LR acqui-
sitions by a factor of 4 or 5 (see Tables 1 and 2 for more details), 
resulting in a net laser dose decrease of roughly 64–80×. Thus, our 
PSSR model was trained to restore LR, low SNR, low-pixel reso-
lution confocal images to high SNR, high-pixel resolution, high 
‘optical’ (that is, deblurred) resolution Airyscan-equivalent image 
quality. To start, we trained on live-cell time-lapse acquisitions of 
mitochondria in U2OS cells. As expected, imaging at full resolution 
resulted in serious bleaching and phototoxicity-induced mitochon-
drial swelling and fission (Supplementary Video 5). However, the 
LR acquisitions were extremely noisy and pixelated due to under-
sampling. However, the LR scans showed far less photobleaching 
(Extended Data Fig. 4). Similar to our EM data, LR-PSSR images 
had higher SNR and resolution compared to LR acquisitions, as 
determined by testing on both semisynthetic and real-world LR 
versus HR image pairs. Notably, LR-PSSR images also had higher 
SNR than HR images (Fig. 4d).

We observed severe ‘flickering’ in LR-PSSR time-lapses 
(Supplementary Video 6 and Fig. 4b) due to noise-induced varia-
tions in signal detection and image reconstruction, causing both 
false breaks and merges in mitochondrial networks (Fig. 4c, white 
boxes and Fig. 4d, red and yellow arrows), making it impossible  
to accurately detect bona fide mitochondrial fission or fusion  
events. This temporal inconsistency was reflected in neighboring- 
frame cross-correlation analysis (Fig. 4b, see Methods for full 
details). One strategy for increasing the SNR of images is to aver-
age multiple scans, for example ‘frame averaging’; this method can  
also be used to reduce ‘flickering’ effects in videos (Fig. 4b). How
ever, this approach is problematic for live imaging of quickly  
moving objects: If objects move greater than half the distance of 
the desired spatial resolution between individual frames, temporal 
Nyquist criteria are no longer satisfied, resulting in blurring artifacts 
and loss of both spatial and temporal resolution30,31. This loss of  
information is compounded if spatial Nyquist criteria are also  
unmet, that is when subsampling pixels, as is the case in LR acqui-
sitions. However, although simple frame averaging approaches 
may lose resolution in exchange for higher SNR, more sophisti-
cated computational approaches can take advantage of multi-frame 
acquisitions to increase the resolution of individual frame 
reconstructions32–35.

We hypothesized that the PSSR network could learn the addi-
tional information contained in sequential video frames, even when 
grossly undersampled in both space and time, and could thus be 
used to reduce flickering artifacts, while also improving the resto-
ration accuracy and resolution of PSSR-processed time-lapse vid-
eos. To test this hypothesis, we exploited the multi-dimensional 
capabilities of our PSSR Res-U-Net architecture by training on 
five sequential timepoint inputs for each single timepoint output 
(multi-frame PSSR, or PSSR-MF, Fig. 4a). As measured by PSNR, 
SSIM, FRC and NanoJ-SQUIRREL error mapping, as well as  

Fig. 3 | PSSR model is effective for multiple EM modalities and sample types. a–d, Shown are representative LR, LR-bilinear and PSSR-restored 
(LR-PSSR) images from mouse brain sections (n = 75 sections in one image stack, xy dimension 240 × 240 pixels) imaged with a Zeiss Sigma VP Gatan 
SBSEM system (a), fly sections (n = 50 sections in one image stack, xy dimension 1,250 × 1,250 pixels) acquired with Zeiss/FEI FIB–SEM (b), mouse 
sections (n = 563 sections in one image stack, xy dimension 240 × 240 pixels) from Zeiss/FEI FIB–SEM (c) and rat sections (one montage, xy dimension 
2,048 × 1,024 pixels) imaged with a Hitachi Regulus ssEM (d). e, Validation of presynaptic vesicle detection. LR, LR-bilinear, LR-PSSR and ground truth HR 
images of a representative bouton region as well as their color-labeled vesicle counts are shown. Vesicles colored magenta represent false negatives, green 
are false positives and white are true positives. Docked vesicles are outlined in yellow. The percentage of each error type is shown in the pie chart. Vesicle 
counts from two humans were plotted (dashed line, Human-1; solid line, Human-2), with the average total error ± s.e.m. displayed above. Experiments 
were conducted with n = 10 independent bouton regions in all conditions, achieving similar results. The linear regression between LR-bilinear and HR, 
LR-PSSR and HR, and two human counters of HR are shown in the third row. The equation for the linear regression, the goodness-of-fit (R2) and the P value 
of each graph are displayed. Scale bars, 1.5 μm.
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compared with the BM3D denoising algorithm, PSSR-MF pro-
cessing of LR acquisitions (LR-PSSR-MF) showed significantly 
increased resolution and SNR compared to the raw input (LR), 16× 
bilinear interpolated input (LR-bilinear) and single-frame PSSR 
(LR-PSSR-SF) (Fig. 4d,f and Extended Data Figs. 7 and 8). Since it 
is conceivable that simply averaging five frames would yield similar 
improvements due to reduced flickering and increased SNR, we tested 
whether using a five-frame rolling average over the LR-PSSR-SF out-
put (LR-PSSR-SF-RA) could yield similar results to LR-PSSR-MF. 
Although LR-PSSR-SF-RA output displayed reduced flickering  
(Fig. 4b,c), we found that LR-PSSR-SF-RA performed significantly 
worse than LR-PSSR-MF in terms of both resolution and accuracy 
(Fig. 4c, Extended Data Fig. 6 and Supplementary Video 6). We 
also compared PSSR models with content-aware image restoration 

(CARE), a gold standard DL-based image restoration algorithm  
(Fig. 4b,c, Extended Data Fig. 6 and Methods). Specifically, CARE 
trained results (LR-CARE) and its rolling average postprocessed 
version (LR-CARE-RA) were compared with LR-PSSR-MF, 
LR-PSSR-SF and its rolling average postprocessed results 
(LR-PSSR-SF-RA). As expected, the LR-CARE and LR-PSSR-SF 
results were similar. However, we found the multi-frame PSSR 
approach yielded better results than CARE, both before and after 
the rolling average processing (Extended Data Fig. 6). We therefore 
concluded multi-frame PSSR significantly enhances the fidelity 
and resolution of LR images beyond any standard frame-by-frame 
image restoration approach.

For all time-lapse PSSR we used PSSR-MF and refer to it as 
PSSR for the remainder of this article. The improved speed, reso-
lution and SNR enabled us to detect mitochondrial fission events 
that were not detectable in the LR or LR-bilinear images (yellow 
arrows, Fig. 4e and Supplementary Video 7). Additionally, the rela-
tively high laser dose during HR acquisitions raises questions as to 
whether observed fission events are artifacts of phototoxicity. We 
validated the accuracy of our fission event detection with semisyn-
thetic data quantified by two expert humans (Fig. 4g,h). We found 
a notable improvement in detecting fission events with relatively 
minor increases in false positives (Fig. 4h–k). We again found the 
variance between the PSSR and HR results was similar to the vari-
ance between the two expert human results on HR data. Thus, our 
PSSR model provides an opportunity to detect very fast mitochon-
drial fission events with fewer phototoxicity-induced artifacts than 
standard HR Airyscan imaging using normal confocal optics and 
detectors.

As mentioned above, in addition to phototoxicity issues, the slow 
speed of HR scanning confocal imaging often results in temporal  
undersampling of fast-moving structures such as motile mito
chondria in neurons (Supplementary Fig. 1 and Supplementary 
Videos 8 and 9). However, relatively fast LR scans do not provide 
sufficient pixel resolution or SNR to resolve fission or fusion events, 
or individual mitochondria when they pass one another along a 
neuronal process, which can result in faulty analysis or data inter-
pretation (Supplementary Video 8). Thus, we next tested whether 
PSSR provided sufficient restoration of undersampled time-lapse 
imaging of mitochondrial trafficking in neurons.

As measured by PSNR, SSIM, FRC and NanoJ-SQUIRREL 
error mapping, the overall resolution and SNR improvement pro-
vided by PSSR enabled us to resolve adjacent mitochondria as 
well as fission and fusion events (Fig. 5a–c, Extended Data Figs. 9  
and 10 and Supplementary Video 9). Since our LR acquisi-
tion rates are 16× faster than HR, instantaneous motility details  
were preserved in LR-PSSR whereas in HR images they were lost 
(Fig. 5d, Supplementary Fig. 1 and Supplementary Video 9). The 
overall total distance mitochondria traveled in neuronal processes 
was the same for both LR and HR (Fig. 5f). However, we were able  
to obtain unique information about how they translocate when 

Table 1 | Details of fluorescence PSSR training experiments

Experiment U2OS 
MitoTracker 
PSSR-SF

U2OS 
MitoTracker 
PSSR-MF

Neuron 
Mito-dsRed 
PSSR-MF

Input size (x, y, z) (128, 128, 1) (128, 128, 5) (128, 128, 5)

Output size (x, y, z) (512, 512, 1) (512, 512, 1) (512, 512, 1)

No. of image pairs for 
training

5,000 5,000 3,000

No. of image pairs for 
validation

200 200 300

No. of GPUs 2 2 2

Training datasource 
size (GB)

9.4 9.4 9.5

Validation datasource 
size (GB)

0.44 0.44 1.8

Training dataset  
size (GB)

1.38 1.7 1.03

Validation dataset 
size (GB)

0.06 0.07 0.1

Batch size per GPU 8 8 6

No. of epochs 100 100 50

Training time (h) 3.76 3.77 1.25

Learning rate 4 × 10−4 4 × 10−4 4 × 10−4

Best model found  
at epoch

33 86 39

Normalized to 
ImageNet statistics?

No No No

ResNet size ResNet34 ResNet34 ResNet34

Loss function MSE MSE MSE

Table 2 | Details of fluorescence PSSR testing data for PSNR, SSIM and error mapping

U2OS MitoTracker Neuron Mito-dsRed

Semisynthetic Real world Semisynthetic Real world

HR LR HR HR LR HR

Microscopy Airyscan Confocal Airyscan Airyscan Confocal Airyscan

Laser power (μW) 35 7 28 82 11 55

Datasource size (MB) 1,250 7.15 200 5,920 10.7 305

Dataset size (MB) 325 6.39 191 1,970 10.4 305

Total number of different cells 6 10 10 7 10 10
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imaging at a 16× higher frame rate (Fig. 5g). A larger range of 
velocities was identified in LR-PSSR than both LR and HR images. 
Overall, LR-PSSR and HR provided similar values for the percent-
age of time mitochondria spent in motion (Fig. 5h). Smaller dis-
tances traveled were easier to detect in our LR-PSSR images, and 
therefore there was an overall reduction in the percentage of time 
mitochondria spent in the paused position in our LR-PSSR data 
(Fig. 5i). Taken together, these data show PSSR provides a means 
to detect critical biological events that would not be possible with 
conventional HR or LR imaging.

Discussion
We have demonstrated DL-based pixel super-resolution can be 
a viable strategy of particular value for both optical and electron 
point-scanning microscopes. Acquiring suitably aligned pairs of 
high- and low-quality images for training is incredibly expensive 
and difficult (Fig. 1f). Thus, we introduced a new ‘crappifier’ for 
generating noisy, LR training data from HR, high SNR ground truth 
data. This enables the use of large, pre-existing gold standard data-
sets for training new models without acquiring any new data. We 
hope the open-source availability of our crappifier will be recipro-
cated by open-source sharing of high-quality imaging data, which 
can then be used to train new DL models. We did not fully explore 
all possibilities for a crappifier and believe this is an open and fruit-
ful area for future studies.

We discovered that DL-based restoration of noisy time-lapses 
suffers from temporal inconsistency (flickering) artifacts due to 
noise-induced randomness in pixel values between frames. To 
address this, we introduced a multi-frame super-resolution approach 
that leverages the information in previous and future timepoints 
to better infer the frame of interest. We found this multi-frame 

approach not only reduces flickering artifacts, but also provides bet-
ter overall image restoration for each independent frame. Notably, 
this approach would be impossible without the crappifier, which 
provides the ability to generate training data from videos of rapidly 
moving structures in live cells for which it is impossible to acquire 
perfectly aligned image pairs.

Any output from a DL super-resolution model is a prediction, 
is never 100% accurate and is always highly dependent on suf-
ficient correspondence between the training versus experimental 
data5,8,28,36. Whether the level of accuracy of a given model for a 
given dataset is satisfactory is ultimately dependent on the tolerance 
for error in the measurement being made. For example, our EM 
PSSR model was validated by segmenting vesicles in presynaptic 
boutons. But we did not rule out the possibility that other structures 
or regions in the same sample may not be restored by our model 
with the necessary accuracy for any arbitrary measurement. Thus, 
it is essential to validate the accuracy of the model for the specific 
task at hand before investing further. Similarly, we observed that no 
single performance metric reliably captures the ‘best’ model. Thus, 
model performance must be evaluated by a combination of metrics, 
segmentation and, of course, visual inspection by human experts. 
An important future direction may be to develop better metrics for 
evaluating models.

Although the accuracy of DL approaches such as PSSR is tech-
nically imperfect, real-world limitations on acquiring ground truth 
data may render PSSR the best option. Our results show the PSSR 
approach can in principle enable higher speed and resolution imag-
ing with the fidelity necessary for biological research. The ability to 
use DL to supersample undersampled images provides an opportu-
nity that extends to any point-scanning system, including ion-based 
imaging systems37,38 or HR cryoSTEM39.

Fig. 4 | Multi-frame PSSR time-lapses of mitochondrial dynamics. a, Overview of multi-frame PSSR training data generation method. Five consecutive 
frames (HRi; i 2 t� 2; tþ 2½ 

I
) from a HR Airyscan time-lapse video were synthetically crappified to five LR images (LRi; i 2 t� 2; tþ 2½ 

I
), which together 

with the HR middle frame at time t (HRt), form a five-to-one training ‘pair’. b, Temporal consistency analysis. Neighboring-frame cross-correlation 
coefficient ; Xτ;Xτþ1ð Þð Þ

I
 that corresponds to frame τ on the x axis denotes the correlation coefficient of frame τ (Xτ) and frame τ + 1 (Xτ+1) (left).  

Absolute error against HR ( Δ;j j
I

) for each condition was compared ( Δ;j j ¼ ;τ � ;HRτ
���

���
I

, right). n = 6 independent time-lapses with n = 80–120 timepoints 
each. Colored shades show standard error. The asterisk above LR-PSSR-MF denotes that LR-PSSR-MF is significantly more consistent with HR  
than all other conditions (P < 0.0001). All violin plots show lines at the median and quartiles. c, Examples of false mitochondrial network merges  
(white boxes) due to the severe flickering artifacts in single-frame models (LR-bilinear, LR-CARE and LR-PSSR-SF), and loss of temporal consistency  
and resolution (yellow boxes) in models postprocessed with a ‘rolling frame averaging’ method (LR-CARE-RA and LR-PSSR-SF-RA). Two consecutive 
frames of an example region from semisyntheticly acquired LR, LR-bilinear, CARE (LR-CARE), five-frame rolling average postprocessed CARE output 
(LR-CARE-RA), LR-PSSR-SF, single-frame PSSR postprocessed with a five-frame rolling average (LR-PSSR-RA), five-frame multi-frame PSSR (LR-PSSR-MF) 
and ground truth HR (Airyscan) time-lapses are color coded in magenta (t = 0 s) and green (t = 5 s). Insets show the intensity line plot of the two frames 
drawn in the center of the white box in each condition. The yellow box shows an example of temporal resolution loss in rolling average conditions 
(LR-CARE-RA and LR-PSSR-SF-RA) only. Magenta pixels represent signal that only exists in the t = 0 s frame, but not in the t = 5 s, while green pixels 
represent signal present only in the t = 5 s frame. Scale bar, 2 μm. d, Restoration performance on semisynthetic and real-world testing pairs. For the 
semisynthetic pair, LR was synthetically generated from Airyscan HR videos. Enlarged ROI show an example of well resolved mitochondrial structures 
by PSSR, agreeing with Airyscan ground truth images. Red and yellow arrowheads show two false connecting points in LR-bilinear and LR-PSSR-SF, 
which were well separated in LR-PSSR-MF. In the real-world example, green arrowheads in the enlarged ROI highlight a well restored gap between two 
mitochondria segments in the LR-PSSR-MF output. Normalized line-plot cross-section profile (yellow) highlights false bridging between two neighboring 
structures in LR-bilinear and LR-PSSR-SF, which was well separated with our PSSR-MF model. SNR measured using the images in both semisynthetic 
and real-world examples are indicated. Scale bars, 10 μm. e, PSSR output captured a transient mitochondrial fission event. Shown is a PSSR-restored 
dynamic mitochondrial fission event, with three key time frames displayed. Arrows highlight the mitochondrial fission site. Scale bar, 150 nm. f, PSNR and 
SSIM quantification of the semisynthetic (n = 8 independent time-lapses with n = 80–120 timepoints each) as well as the real world (n = 10 independent 
time-lapses of fixed samples with n = 10 timepoints each) testing sets discussed in d. FRC values measured using two independent LR versus HR 
acquisitions from multiple cells are indicated (n = 10). g, Validation of fission event captures using semisynthetic data. An example of a fission event that 
was detectable in LR-PSSR but not LR-bilinear. Experiments were repeated with eight time-lapses, achieving similar results. Scale bar, 1 μm. h, For fission 
event detection, the number of false positives, false negatives and true positives detected by expert humans was quantified for eight different  
time-lapses. Distribution was shown in the pie charts. Fission event counts from two humans were plotted (dashed line, Human-1; solid line, Human-2).  
i–k, Linear regression between LR-bilinear and HR, LR-PSSR and HR, and two human counters of HR are shown (n = 8 independent time-lapses with 
n = 80–120 timepoints each). The linear regression equation, the goodness-of-fit (R2) and the P value of each graph are displayed. All values are shown as 
mean ± s.e.m. P values are specified in the figure for 0.0001 < P < 0.05. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; NS, not significant; two-sided 
paired t-test.
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For future uses of PSSR, we propose an acquisition scheme 
wherein a relatively limited number of ‘ground truth’ HR images 
are acquired for fine-tuning pretrained models. More importantly, 
the performance of generalized, unsupervised or ‘self-supervised’ 
denoising approaches7,9 as well as DL-enabled deconvolution 
approaches19,20 suggests we may one day be able to generate a 
more generalized model for a specific imaging system, instead of a  
specific sample type.

Structured illumination microscopy, single-molecule localiza-
tion microscopy and pixel reassignment microscopy demonstrate 
the power of configuring optical imaging schemes with a spe-
cific postprocessing computational strategy in mind. The power  
of deep convolutional neural networks for postprocessing image 
data presents a new opportunity for redesigning imaging systems  
to exploit these capabilities to minimize costs traditionally consi
dered necessary for extracting meaningful imaging data. Similarly, 
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automated real-time corrections to the images and real-time 
feedback to the imaging hardware are now within reach. This is  
an exciting area of active investigation in our laboratory and others40.
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Fig. 5 | Spatiotemporal analysis of mitochondrial motility in neurons. PSSR facilitates high-spatiotemporal resolution imaging of mitochondrial motility 
in neurons. a, Comparison of LR-PSSR results versus LR-bilinear interpolation on semisynthetic (n = 7 independent time-lapse videos with n = 100 
independent timepoints each) and real-world testing pairs (n = 6 independent time-lapse videos with n = 12 independent timepoints each). Enlarged ROI 
from representative images show PSSR resolved two mitochondria in both semisynthetic and real-world testing sets, quantified by normalized line-plot 
cross-section profiles. Scale bars, 10 μm (upper) and 15 μm (lower). b, PSNR (top) and SSIM (middle) quantification of the datasets in a. FRC resolution 
measured from two independent acquisitions of the real-world overview dataset discussed in a is indicated (bottom). c, PSSR restoration of LR time-lapses 
resolves mitochondria moving past one another in a neuronal process (arrows indicate direction of movement). Scale bar, 2 μm. d, Representative 
kymographs of mitochondrial motility in hippocampal neurons transfected with Mito-DsRed (n = 7 independent LR time-lapse videos processed to 
LR-PSSR). First frame of each time-lapse video is shown above each kymograph. Different color arrowheads indicate mitochondria going through fission 
and fusion events. Each color represents a different mitochondrion. Scale bar, 10 μm. e, Enlarged areas of d, capturing mitochondrial fission and fusion 
events in real-time. Scale bar, 5 μm. f–i, Mitochondrial motility was quantified from time-lapse videos as demonstrated in Supplementary Video 8. For each 
mitochondrial trajectory the total distance mitochondria traveled (f), mitochondrial velocity (g), percentage time mitochondria spent in motion (h) and in 
pause (i) was quantified (n = 76 − 216 mitochondria from four neurons and three independent experiments). All values are shown as mean ± s.e.m. P values 
are specified in the figure for 0.0001 < P < 0.05. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; NS, not significant; two-sided paired t-test (b) and 
Kruskal–Wallis test followed by Dunn’s multiple comparison test (f–i).
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Methods
Semisynthetic training image generation. HR images were acquired using 
scanning electron or Airyscan confocal microscopes. Due to the variance of  
image properties (for example, format, size, dynamic range and depth) in the 
acquired HR images, data cleaning is indispensable for generating training sets  
that can be easily accessed during training. In this article, we differentiate the 
concept of ‘data sources’ and ‘datasets’, where data sources refer to uncleaned 
acquired HR images and datasets refer to images that are generated and 
preprocessed from data sources. HR datasets were obtained after preprocessing HR 
images from data sources, LR datasets were generated from HR datasets using a 
‘crappifier’ function.

Preprocessing. Tiles of predefined sizes (for example, 256 × 256 and 512 × 512 pixels) 
were randomly cropped from each frame in image stacks from HR data sources. 
‘Refection padding’ was used if the image size in the data sources is smaller than 
the predefined tile size. All tiles were saved as separate images in .tif format, which 
together formed a HR dataset.

Image crappification. A ‘crappifier’ was then used to synthetically degrade the 
HR datasets to LR images, with the goal of approximating the undesired and 
unavoidable pixel intensity variation in real-world LR and low SNR images of 
the same field of view directly taken under an imaging system. These HR images 
together with their corrupted counterparts served as training pairs to facilitate 
‘deCrappification’. The crappification function can be simple, but it materially 
improves both the quality and characteristics of PSSR outputs.

Image sets were normalized from 0 to 1 before being 16× downsampled in 
pixel resolution (for example, a 1,000 × 1,000 pixel image would be downsampled 
to 250 × 250 pixels). To mimic the image quality degradation caused by 16× 
undersampling on a real-world point-scanning imaging system, Salt&Pepper noise 
and Gaussian additive noise with specified local variance were randomly injected 
into the HR images. The degraded images were then rescaled to 8-bit for viewing 
with normal image analysis software.

EM crappifier. Random Gaussian-distributed additive noise (μEM = 0, σEM = 3) was 
injected. The degraded images were then downsampled using spline interpolation 
of order 1.

MitoTracker and neuronal mitochondria crappifier. The crappification of MitoTracker 
and neuronal mitochondria data followed a similar procedure. Salt&Pepper noise  
was randomly injected in 0.5% of each image’s pixels replacing them with noise,  
which was followed by the injection of random Gaussian-distributed additive noise  
(μLSM = 0, σLSM = 5). The crappified images were then downsampled using spline 
interpolation of order 1.

Data augmentation. After crappified LR images were generated, we used data 
augmentation techniques such as random cropping, dihedral affine function, 
rotation, random zoom to increase the variety and size of our training data41.

Multi-frame training pairs. Unlike imaging data of fixed samples, where we use 
traditional one-to-one HR and LR images as training pairs, for time-lapse videos, 
five consecutive frames (HRi; i 2 t � 2; t þ 2½ 

I
) from a HR Airyscan time-lapse 

video were synthetically crappified to five LR images (LRi; i 2 t � 2; t þ 2½ 
I

), which 
together with the HR middle frame at time t (HRt), form a five-to-one training 
‘pair’. The design of five-to-one training ‘pairs’ leverages the spatiotemporal 
continuity of dynamic biological behaviors (Fig. 4a).

Crappifier comparison. EM crappifier comparison. Four crappifiers including 
‘no noise’, ‘Poisson’, ‘Gaussian’ and ‘additive Gaussian’ were used to generate 
semisynthetic training pairs from the same set of HR SEM images. The ‘no noise’ 
crappifier simply downsampled HR image pixel sizes by a factor of 16× (4 × 4) 
without adding any noise, while the Poisson, Gaussian and additive-Gaussian 
crappifiers added random Poisson noise, random Gaussian noise (μEM = 0, 
σEM = 0.15) and random Gaussian-distributed additive noise (μEM = 0, σEM = 3), 
respectively, before applying pixel downsampling. The ‘additive Gaussian (roughly 
80×)’ used the same crappifier as additive Gaussian, but with roughly 80× more 
training data. We also compared the models described above with ‘real world’, a 
model trained with real-world pairs, whose HR images are the same as the HR 
images of the semisynthetically generated training pairs, but whose LR images were 
manually acquired at the microscope.

MitoTracker crappifier comparison. Five crappifiers including no noise, 
Salt&Pepper, Gaussian, additive Gaussian and ‘Salt&Pepper + additive Gaussian’ 
were used to generate semisynthetic training pairs from the same set of HR 
Airyscan MitoTracker time-lapse videos. The no noise crappifier downsampled 
HR image pixel sizes by a factor of 16× (4 × 4) without adding any noise, while the 
Salt&Pepper, Gaussian, additive Gaussian and Salt&Pepper + additive-Gaussian 
crappifiers added random Salt&Pepper noise (0.5%), random Gaussian noise 
(μLSM = 0, σLSM = 0.025), random Gaussian-distributed additive noise (μLSM = 0, 

σLSM = 5) and the combination of Salt&Pepper and additive Gaussian, respectively, 
before the bilinear downsampling.

Neural networks. Single-frame neural network (PSSR-SF). A ResNet-based U-Net 
was used as our convolutional neural network for training42. Our U-Net is in the 
form of encoder-decoder with skip-connections, where the encoder gradually 
downsizes an input image, followed by the decoder upsampling the image back 
to its original size. For the EM data, we used ResNet pretrained on ImageNet as 
the encoder. For the design of the decoder, the traditional handcrafted bicubic 
upscaling filters are replaced with learnable subpixel convolutional layers43, 
which can be trained specifically for upsampling each feature map optimized in 
LR parameter space. This upsampling layer design enables better performance 
and largely reduces computational complexity, but at the same time causes 
unignorable checkerboard artifacts due to the periodic time-variant property of 
multirate upsampling filters44. A blurring technique45 and a weight initialization 
method, known as subpixel convolution initialized to convolution neural network 
resize46 that was designed for the subpixel convolution upsampling layers, were 
implemented to remove checkerboard artifacts. In detail, the blurring approach 
introduces an interpolation kernel of the zero-order hold with the scaling 
factor after each upsampling layer, the output of which gives out a nonperiodic 
steady-state value, which satisfies a critical condition ensuring a checkerboard 
artifact-free upsampling scheme45. Compared to random initialization, in addition 
to the benefit of removing checkerboard artifacts, subpixel convolution initialized 
to convolution neural network resize also empowers the model with higher 
modeling power and higher accuracy46. A self-attention layer inspired by Zhang 
et al.47 was added after each convolutional layer.

Multi-frame neural network (PSSR-MF). A similar yet slightly modified U-Net 
was used for time-lapse video training. The input layer was redesigned to take five 
frames simultaneously while the last layer still produced one frame as output.

Training details. Loss function. MSE loss was used as our loss function.

Optimization methods. Stochastic gradient descent with restarts (SGDR)48 was 
implemented. Aside from the benefits we are able to get through classic stochastic 
gradient descent, this method resets the learning rate to its initial value at the 
beginning of each training epoch and allows it to decrease again following 
the shape of a cosine function, yielding lower loss with higher computational 
efficiency.

Cyclic learning rate and momentum. Instead of having a gradually decreasing 
learning rate as the training converges, we adopted cyclic learning rates49, cycling 
between the upper and lower bounds, which helps oscillate toward a higher 
learning rate, thus avoiding saddle points in the hyper-dimensional training loss 
space. In addition, we followed The One Cycle Policy50, which restricts the learning 
rate to only oscillate once between the upper and lower bounds. Specifically, the 
learning rate linearly increases from the lower bound to the upper bound as the 
momentum decreases from its upper bound to the lower bound linearly. In the 
second half of the cycle, the learning rate fits a cosine annealing decreasing from 
the upper bound to zero while the momentum increases from its lower bound to 
the upper bound following the same annealing. This training technique achieves 
superior regularization by preventing the network from overfitting during the 
middle of the learning process, as well as enabling super-convergence51 by allowing 
large learning rates and adaptive momentum.

Progressive resizing (used for EM data only). Progressive resizing was applied  
during the training of the EM model. Training was executed in two rounds with 
HR images scaled to xy pixel sizes of 256 × 256 and 512 × 512 and LR images  
scaled to 64 × 64 and 128 × 128 progressively. The first round was initiated with  
an ImageNet pretrained ResU-Net, and the model trained from the first round 
served as the pretrained model for the second round. The intuition behind this  
is it quickly reduces the training loss by allowing the model to see lots of images  
at a small scale during the early stages of training. As the training progresses,  
the model focuses more on picking up high-frequency features reflected through 
fine details that are only stored within larger scale images. Therefore, features that 
are scale-variant can be recognized through the progressively resized learning  
at each scale.

Discriminative learning rates (used for EM data only). To better preserve the 
previously learned information, discriminative learning was applied during each 
round of training for the purpose of fine-tuning. At the first stage of training, only 
the parameters from the last layer were trainable after loading a pretrained model, 
which either came from a large-scaled trained publicly available model (that is, 
pretrained ImageNet), or from the previous round of training. The learning rate 
for this stage, lr1, was fixed. Parameters from all layers were set as learnable in the 
second stage. A linearly spaced learning rate range lr2 was applied. The learning 
rate gradually increased across the layers of the entire network architecture. The 
number of training epochs at each round is denoted as (N1, N2), where N1 and N2 
denote the epoch number used at stage one and stage two separately:
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EM training data

Round of progressive resizing 1 2 3
Input size (x, y, z) (32, 32, 3) (64, 64, 3) (128, 128, 3)
Output size (x, y, z) (128, 128, 3) (256, 256, 3) (512, 512, 3)
Batch size per GPU 64 16 8
No. of epochs (N1, N2) (1, 1) (3, 3) (3, 3)
Learning rate (lr1, lr2) (1 × 10−3 

(1 × 10−5, 
1 × 10−3))

(1 × 10−3 
(1 × 10−5, 
1 × 10−3))

(1 × 10−3 
(1 × 10−5, 
1 × 10−4))

Training dataset size (GB) 3.9 15.56 62.24
Validation dataset size (GB) 0.96 3.89 15.56
Training datasource size (GB) 105
Validation datasource size (GB) 26
No. of image pairs for training 80,000
No. of image pairs for validation 20,000
Total training time (h) 16
Normalized to ImageNet 
statistics?

Yes

ResNet size ResNet34
Loss function MSE

No. of GPUs 2

Best model preservation (used for fluorescence data only). Instead of saving the 
last model after training a fixed number of epochs, at the end of each training 
epoch, PSSR checks if the validation loss goes down compared to the loss from 
the previous epoch and will only update the best model when a lower loss is 
found. This technique ensures the best model will not be missed due to local loss 
fluctuation during the training.

Elimination of tiling artifacts. Testing images often need to be cropped into smaller 
tiles before being fed into our model due to the memory limit of graphic cards. 
This creates tiling edge artifacts around the edges of tiles when stitching them 
back to the original images. A Gaussian blur kernel (μtile = 0, σtile = 1) was applied 
to a ten-pixel wide rectangle region centered in each tiling edge to eliminate the 
artifacts.

Technical specifications. Final models were generated using fast.ai v.1.0.55  
library (https://github.com/fastai/fastai), PyTorch on two NVIDIA TITAN RTX 
graphical processing units (GPUs). Initial experiments were conducted using 
NVIDIA Tesla V100s, NVIDIA Quadro P6000s, NVIDIA Quadro M5000s, 
NVIDIA Titan Vs, NVIDIA GeForce GTX 1080s or NVIDIA GeForce RTX  
2080Ti GPUs.

Evaluation metrics. PSNR and SSIM quantification. Two classic image quality 
metrics, PSNR and SSIM, known for their properties of pixel-level data fidelity and 
perceptual quality fidelity, correspondingly, were used for the quantification of our 
paired testing image sets.

PSNR is inversely correlated with MSE, numerically reflecting the pixel 
intensity difference between the reconstruction image and the ground truth  
image, but it is also famous for poor performance when it comes to estimating 
human perceptual quality. Instead of traditional error summation methods,  
SSIM is designed to consider distortion factors such as luminance distortion, 
contrast distortion and loss of correlation when interpreting image quality52.

SNR quantification. SNR was quantified for LSM testing images (Figs. 4b and 5a) by

SNR ¼
IMAX � μbg

σbg

where IMAX represents the maximum intensity value in the image, μbg and σbg 
represent the mean and the standard deviation of the background, respectively17.

FRC analysis. NanoJ-SQUIRREL25 was used to calculate image resolution using 
FRC method on real-world testing examples with two independent acquisitions of 
fixed samples (Figs. 2b,c, 4c and 5b).

Resolution-scaled error and resolution-scaled Pearson’s coefficient. NanoJ-SQUIRREL25 
was used to calculate the resolution-scaled error and resolution-scaled Pearson’s 
coefficient for both semisynthetic and real-world acquired LR, LR-bilinear and  
PSSR (LR-PSSR) images versus ground truth HR images. Difference error maps  
were also calculated (Extended Data Figs. 2, 7 and 10).

EM imaging and analysis. tSEM HR training data acquisition. Tissue from a 
perfused 7-month-old Long–Evans male rat was cut from the left hemisphere 
stratum radiatum of CA1 of the hippocampus. The tissue was stained, embedded 
and sectioned at 45 nm using previously described protocols53. Sections were 
imaged using a scanning transmission EM detector on a Zeiss Supra 40 scanning 
electron microscope with a 28 kV accelerating voltage and an extractor current of 
102 μA (gun aperture 30 μm). Images were acquired with a 2 nm pixel size and a 
field size of 24,576 × 24,576 pixels with Zeiss Atlas. The working distance from the 
specimen to the final lens was 3.7 mm, and the dwell time was 1.2 μs.

EM testing sample preparation and image acquisition. EM datasets were acquired 
from multiple systems at multiple institutions for this study.

For our testing ground truth data, paired LR and HR images of the adult mouse 
hippocampal dentate gyrus middle molecular layer neuropil were acquired from 
ultrathin sections (80 nm) collected on silicon chips and imaged in a Zeiss Sigma 
VP FE–SEM21. All animal work was approved by the Institutional Animal Care and 
Use Committee of the Salk Institute for Biological Studies. Samples were prepared 
for EM according the NCMIR protocol54. Pairs of 4 × 4 μm2 images were collected 
from the same region at pixels sizes of both 8 and 2 nm using Fibics Atlas software 
(InLens detector, 3 kV; dwell time, 5.3 μs; line averaging, 2; aperture, 30 μm and 
working distance, 2 mm).

SBFSEM images were acquired with a Gatan 3View system installed on the 
Zeiss Sigma VP FE–SEM. Images were acquired using a pixel size of 8 nm on a 
Gatan backscatter detector at 1 kV and a current of 221 pA. The pixel dwell time 
was 2 μs with an aperture of 30 μm and a working distance of 6.81 mm. The section 
thickness was 100 nm and the field of view was 24.5 × 24.5 μm2.

Mouse FIB–SEM data sample preparation and image acquisition settings were 
previously described in the original manuscript the datasets were published22. 
Briefly, the images were acquired with 4 nm voxel resolution. We downsampled the 
lateral resolution to 8 nm, then applied our PSSR model to the downsampled data 
to ensure the proper 8-to-2 nm transformation for which the PSSR was trained.

Fly FIB–SEM data sample preparation and image acquisition settings were 
previously described in the original manuscript the datasets were published55. 
Briefly, images were acquired with 10 nm voxel resolution. We first upsampled the 
xy resolution to 8 nm using bilinear interpolation, then applied our PSSR model to 
the upsampled data to ensure the proper 8-to-2-nm transformation for which the 
PSSR model was originally trained.

The rat SEM data sample was acquired from an 8-week old male Wistar rat 
that was anesthetized with an overdose of pentobarbital (75 mg kg−1) and perfused 
through the heart with 5–10 ml of a solution of 250 mM sucrose 5 mM MgCl2 in 
0.02 M phosphate buffer (pH 7.4) followed by 200 ml of 4% paraformaldehyde 
containing 0.2% picric acid and 1% glutaraldehyde in 0.1 M phosphate buffer. 
Brains were then removed and oblique horizontal sections (50 µm thick) of frontal 
cortex/striatum were cut on a vibrating microtome (Leica VT1200S) along the 
line of the rhinal fissure. The tissue was stained and cut to 50-nm sections using 
ATUMtome (RMC Boeckeler) for SEM imaging using the protocol described in 
the original publication for which the data were acquired56. The Hitachi Regulus 
rat SEM data were acquired using a Regulus 8240 FE–SEM with an acceleration 
voltage of 1.5 kV, a dwell time of 3 μs, using the backscatter detector with a pixel 
resolution of 10 × 10 nm2. We first upsampled the xy resolution to 8 nm using 
bilinear interpolation, then applied our PSSR model to the upsampled data to 
ensure the proper 8-to-2-nm transformation for which the PSSR model was 
originally trained.

EM segmentation and analysis. Image sets generated from the same region of the 
neuropil (LR-bilinear, LR-PSSR and HR) were aligned rigidly using the ImageJ 
plugin Linear stack alignment with SIFT57. Presynaptic axonal boutons (n = 10) 
were identified and cropped from the image set. The bouton image sets from  
the three conditions were then assigned randomly generated filenames and 
distributed in a blinded manner to two human experts for manual segmentation 
of presynaptic vesicles. Vesicles were identified by having a clear and complete 
membrane, being round in shape and of approximately 35 nm in diameter. 
For consistency between human experts, vesicles that were embedded in or 
attached to obliquely sectioned axonal membranes were excluded. Docked and 
nondocked synaptic vesicles were counted as separate pools. Vesicle counts were 
recorded and unblinded and grouped by condition and by expert counter. Linear 
regression analyses were conducted between the counts of the HR images and 
the corresponding images of the two different LR conditions (LR-bilinear and 
LR-PSSR) to determine how closely the counts corresponded between the HR  
and LR conditions. Linear regression analysis was also used to determine the 
variability between counters.

Fluorescence imaging and analysis. U2OS cell culture. U2OS cells were purchased 
from ATCC. Cells were grown in DMEM supplemented with 10% fetal bovine 
serum at 37 °C with 5% CO2. Cells were plated onto either eight-well no. 1.5 
imaging chambers or no. 1.5 35-mm dishes (Cellvis) coated with 10 μg ml−1 
fibronectin in PBS at 37 °C for 30 min before plating. Next, 50 nm MitoTracker 
Deep Red or CMXRos Red (ThermoFisher) was added for 30 min then washed 
for at least 30 min to allow for recovery time before imaging in FluoroBrite 
(ThermoFisher) media.
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Airyscan confocal imaging of U2OS cells. To generate our ground truth training 
and testing dataset we used a Zeiss Airyscan LSM 880, an advanced confocal 
microscope that uses a 32-detector array and postprocessing pixel reassignment  
to generate images roughly 1.7× higher in resolution (roughly 120 nm) and  
roughly 8× higher SNR than a standard confocal system. All HR ground truth 
training data were acquired with a ×63 objective with at least 2× Nyquist sampling 
pixel sizes (roughly 50 ± 10 nm pixels), then Airyscan processed (deconvolved) 
using Zeiss Zen software. For the real-world LR test data, we acquired images  
at 16× lower pixel resolution (roughly 200 nm pixel sizes) with a 2.5 AU pinhole  
on a PMT confocal detector, without any additional image processing. We 
maintained equal pixel dwell times for the HR versus LR testing acquisitions, 
resulting in overall 16× shorter exposure times for the LR images. To ensure 
minimal phototoxicity, we also decreased the laser power for our LR acquisitions 
by a factor of 4 or 5 (see Tables 1 and 2 for more details), resulting in a net laser 
dose decrease of roughly 64–80× (for example, 5× lower laser power and 16× 
shorter exposure time yields a 80× lower laser dose). Furthermore, our LR testing 
data were not deconvolved and used a much larger effective pinhole size than  
the HR Airyscan ground truth data, resulting in a blurrier image with lower  
optical resolution. Cells were imaged with a ×63 1.4 numerical aperture (NA)  
oil objective on a Zeiss 880 LSM Airyscan confocal system with an inverted  
stage and heated incubation system with 5% CO2 control. For both HR and LR 
images, equal or lower (when indicated) laser power and equal pixel dwell time of 
roughly 1 μs per pixel was used. For testing PSSR-MF, at least ten sequential frames 
of fixed samples were acquired with HR and LR settings to facilitate PSSR-MF 
processing.

Neuron preparation. Primary hippocampal neurons were prepared from E18 
rat (Envigo) embryos as previously described. Briefly, hippocampal tissue was 
dissected from embryonic brain and further dissociated to single hippocampal 
neuron by trypsinization with Papain (Roche). The prepared neurons were plated 
on coverslips (Bellco Glass) coated with 3.33 μg ml−1 laminin (Life Technologies) 
and 20 μg ml−1 poly-l-lysine (Sigma) at the density of 7.5 × 104 cells per cm2. 
The cells were maintained in Neurobasal medium supplemented with B27 (Life 
Technologies), penicillin/streptomycin and l-glutamine for 7–21 d in vitro. 
Two days before imaging, the hippocampal neurons were transfected with 
Lipofectamine 2000 (Life Technologies).

Temporal consistency analysis. Given a preprocessed time-lapse video with N total 
number of frames, the cross-correlation coefficient (; Xi;Xiþ1ð Þ; i 2 ½1;NÞ

I
) was 

calculated for two neighboring frames (Xi and Xi+1) repeatedly across each video 
with a step size of i = 1 (Fig. 4b). To ensure comparisons between PSSR output 
and ground truth data were not biased by high-frequency artifacts and noise, each 
time-lapse was first preprocessed with a Gaussian blur filter (σ = 5).

Fission event detection and analysis. Given fission events cannot be precisely 
defined across different evaluators, a HR time-lapse of MitoTracker stained 
cells was first given to two human experts as a pilot experiment to examine and 
correct the inspection performance of all experts. Three conditions (LR-bilinear, 
LR-PSSR and HR) of the same Airyscan time-lapses (n = 6) were then sequentially 
assigned in a blinded manner to two human experts for mitochondrial fission 
event detection. Fission event counts were recorded and unblinded and grouped 
by condition and by expert counter. Linear regression analyses were conducted 
between the counts of the HR images and the corresponding images of the two 
different LR conditions (LR-bilinear and LR-PSSR) to determine how closely 
the counts corresponded between the HR and LR conditions. Linear regression 
analysis was used to determine the variability between counters.

Neuronal mitochondria imaging and kymograph analysis. Live-cell imaging of 
primary neurons was performed using a Zeiss LSM 880 confocal microscope, 
enclosed in a temperature control chamber at 37 °C and 5% CO2, using a ×63 (NA 
1.4) oil objective in SR-Airyscan mode (that is, 0.2 AU virtual pinhole). For LR 
conditions, images were acquired with a confocal PMT detector with a pinhole size 
of 2.5 AU at 440 × 440 pixels at 0.5× Nyquist (170 nm per pixel) every 270.49 ms 
using a pixel dwell time of 1.2 µs and a laser power ranging between 1 and 20 µW. 
For HR conditions, images were acquired at 1,764 × 1,764 pixels at 2× Nyquist 
(roughly 42 nm per pixel) every 4.33 s using a pixel dwell time of 1.2 µs and a laser 
power of 20 µW. Imaging data were collected using Zen Black software. HR images 
were further processed using Zen Blue’s 2D-SR-Airyscan processing. Kymograph 
analysis of the time-lapse videos were conducted using ImageJ plugin Kymolyzer as 
described previously58.

Fluorescence photobleaching quantification. Normalized mean intensity over time 
was measured using Fiji software. Given a time-lapse video with N frames, a 
background region was randomly selected and remained unchanged across frames. 
The normalized mean intensity (�IðiÞnorm

I
) can be expressed as:

�IðiÞnorm ¼
�IðiÞimg � �IðiÞbg

MAX �IðiÞimg � �IðiÞbg

� � ; i 2 1;N½ 

where i represents the frame index, �IðiÞbg
I

 represents the mean intensity of the  

selected background region at frame i and �IðiÞimg

I

 represents the intensity mean of the 
entire frame i.

Comparing PSSR with other methods. Block-matching and 3D filtering (BM3D) 
denoising algorithm. We compared PSSR with BM3D, on both EM and fluorescence 
MitoTracker data. Application of BM3D before (LR-BM3D-bilinear) and after 
(LR-bilinear-BM3D) bilinear upsampling of pixel sizes were both tested. A 
wide range of Sigma (σ 2 0; 95ð 

I
), the key parameter that defines the assumed 

zero-mean white Gaussian noise in the images, was thoroughly explored. The exact 
same test set was used for quantification of PSSR versus BM3D results.

CARE and rolling average methods. A semisynthetically crappified dataset of 
MitoTracker data was used to train both CARE and PSSR networks (PSSR-SF 
and PSSR-MF) in a consistent manner. We applied the trained models to 
semisynthetically generated LR testing time-lapses. Testing data were similarly 
crappified as training data. Five-frame rolling average processing was further 
applied to CARE and single-frame testing output.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Example training data and pretrained models are included in the GitHub release 
(https://github.com/BPHO-Salk/PSSR). The entirety of our training and testing 
datasets and data sources are available at Texas Data Repository (https://doi.
org/10.18738/T8/YLCK5A). Source data are provided with this paper.

Code availability
PSSR source code and documentation are available for download on GitHub 
(https://github.com/BPHO-Salk/PSSR) and are free for use under the BSD 3-Clause 
License.
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Extended Data Fig. 1 | PSSR Neural Network architecture. Shown is the ResNet-34 based U-Net architecture. Single-frame PSSR (PSSR-SF) and 
multi-frame PSSR (PSSR-MF) have 1 or 5 input channels, separately.
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Extended Data Fig. 2 | NanoJ-SQUIRREL error-maps of EM data. NanoJ-SQUIRREL was used to calculate the resolution scaled error (RSE) and resolution 
scaled Pearson’s coefficient (RSP) for both semi-synthetic and real-world acquired low (LR), bilinear interpolated (LR-Bilinear), and PSSR (LR-PSSR) 
images versus ground truth high-resolution (HR) images. For these representative images from Fig. 2, the RSE and RSP images are shown along with the 
difference images for each output.
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Extended Data Fig. 3 | Comparison of PSSR vs. BM3D on EM data. PSSR restoration was compared to the Block-matching and 3D filtering (BM3D) 
denoising algorithm. BM3D was applied to low-resolution real-world SEM images before (LR-BM3D-Bilinear) and after (LR-Bilinear-BM3D) bilinear 
upsampling. A wide range of Sigma (σ 2 0;95ð 

I
, with step size of 5), the key parameter that defines the assumed zero-mean white Gaussian noise in 

BM3D method, was thoroughly explored. Images of the same region from the LR input, bilinear upsampled, PSSR restored, and Ground truth is displayed 
in (a). Results of LR-BM3D-Bilinear (b, top row) and LR-Bilinear-BM3D (b, bottom row) with sigma ranging from [10, 15, …, 35] are shown. PSNR and 
SSIM results of LR-BM3D-Bilinear and LR-Bilinear-BM3D across the explored range of sigma are plotted in (c) and (d). Metrics for bilinear-upsampled and 
PSSR-restored images of the same testing set are shown as dashed lines in orange (LR-Bilinear: PSNR = 26.28 ± 0.085; SSIM = 0.767 ± 0.0031) and blue 
(LR-PSSR: PSNR = 27.21 ± 0.084; SSIM = 0.802 ± 0.0026). n = 12 independent images for all conditions. Values are shown as mean ± SEM.
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Extended Data Fig. 4 | Undersampling substantially reduces photobleaching. U2OS cells stained with mitotracker were imaged every 2 seconds with the 
same laser power (2.5μW) and pixel dwell time (~1μs), but with 16x lower resolution (196 x 196 nm xy pixel size) than full resolution Airyscan acquisitions 
(~49 x 49 nm xy pixel size). Mean intensity plots show the relative rates of fluorescence intensity loss over time (that is photobleaching) for LR, LR-PSSR, 
and HR images.
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Extended Data Fig. 5 | See next page for caption.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods


ArticlesNATuRE METhoDS

Extended Data Fig. 5 | Evaluation of crappifiers with different noise injection on mitotracker data. Examples of crappified training images, visualized 
results and metrics (PSNR, SSIM and FRC resolution) of PSSR-SF models that were trained on high- and low-resolution pairs semi-synthetically generated 
by crappifiers with different noise injection were presented. a, Shown is an example of crappified training images generated by different crappifiers, 
including ‘No noise’ (no added noise, downsampled pixel size only), Salt & Pepper, Gaussian, Additive Gaussian, and a mixture of Salt & Pepper plus 
Additive Gaussian noise. High-resolution version of the same region is also included. b, Visualized restoration performance of PSSR models that used 
different crappifiers (No noise, Salt & Pepper, Gaussian, Additive Gaussian, and a mixture of Salt & Pepper plus Additive Gaussian noise). LR input 
and Ground Truth of the example testing ROI are also shown. PSNR (c), SSIM (d) and FRC (e) quantification show the PSSR model that used ‘Salt & 
Pepper + Additive Gaussian’ crappifier yielded the best overall performance (n = 10 independent time-lapses of fixed samples with n = 10 timepoints 
for all conditions). All values are shown as mean ± SEM. P values are specified in the figure for 0.0001 < p < 0.05. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001, ns = not significant; Two-sided paired t-test.
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Extended Data Fig. 6 | Quantitative comparison of CARE and PSSR-SF with PSSR-MF and Rolling Average (RA) methods for timelapse data. PSNR 
(a) and SSIM (b) quantification show a decrease in accuracy when applying RA to LR-CARE and LR-PSSR-SF, while multi-frame PSSR provides superior 
performance compared to LR-PSSR-SF and CARE before and after RA processing. Data points were color-coded based on different cells. See Fig. 4c 
for visualized comparisons, and Supplementary Video 6 for a video comparison of the entire timelapse for CARE, LR-PSSR-SF, LR-PSSR-SF-RA, and 
LR-PSSR-MF. N = 5 independent timelapses with n = 30 timepoints each, achieving similar results. All values are shown as mean ± SEM. ****p < 0.0001; 
Two-sided paired t-test.
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Extended Data Fig. 7 | NanoJ-SQUIRREL error-maps of MitoTracker data. NanoJ-SQUIRREL was used to calculate the resolution scaled error (RSE) 
and resolution scaled Pearson’s coefficient (RSP) for both semi-synthetic and real-world acquired low (LR), bilinear interpolated (LR-Bilinear), and PSSR 
(LR-PSSR) images versus ground truth high-resolution (HR) images. For these representative images from Fig. 4, the RSE and RSP images are shown along 
with the difference images for each output.
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Extended Data Fig. 8 | Compare PSSR with BM3D denoising method on mitotracker data. PSSR restored images was compared to results of applying 
BM3D denoising algorithm to low-resolution real-world mitotracker images before (LR-BM3D-Bilinear) and after (LR-Bilinear-BM3D) bilinear upsampling. 
A wide range of Sigma (σ 2 0;95ð 

I
, with step size of 5) was thoroughly explored. Examples of the same region from the LR input, bilinear upsampled, 

PSSR-SF restored, PSSR-MF restored, and Ground truth are displayed (a, top row). Images from the top 6 results (evaluated by both PSNR and SSIM 
values) of LR-BM3D-Bilinear (a, middle row) and LR-Bilinear-BM3D (a, bottom row) are shown. PSNR and SSIM results of LR-BM3D-Bilinear and 
LR-Bilinear-BM3D across the explored range of sigma are plotted in (b) and (c). Metrics resulted from bilinearly upsampled, PSSR-SF restored and 
PSSR-MF restored images of the same testing set are shown as dash lines in orange (LR-Bilinear: PSNR = 24.42 ± 0.367; SSIM = 0.579 ± 0. 0287), blue 
(LR-PSSR-SF: PSNR = 25.72 ± 0.323; SSIM = 0.769 ± 0.0139) and green (LR-PSSR-MF: PSNR = 26.89 ± 0.322; SSIM = 0.791 ± 0.0133). As it shows, in 
this fluorescence mitotracker example, BM3D performs better than bilinear upsampling with carefully defined noise distribution, whereas its general 
performance given both PSNR and SSIM is overall worse than single-frame PSSR (LR-PSSR-SF). Excitably, our multi-frame PSSR (LR-PSSR-MF) yields the 
best performance. n = 10 independent timelapses of fixed samples with n = 6-10 timepoints each for all conditions. Values are shown as mean ± SEM.
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Extended Data Fig. 9 | NanoJ-SQUIRREL error-maps of neuronal mitochondria data. NanoJ-SQUIRREL was used to calculate the resolution scaled error 
(RSE) and resolution scaled Pearson’s coefficient (RSP) for both semi-synthetic and real-world acquired low (LR), bilinear interpolated (LR-Bilinear), and 
PSSR (LR-PSSR) images versus ground truth high-resolution (HR) images. For these representative images from Fig. 5, the RSE and RSP images are shown 
along with the difference images for each output.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | PSSR facilitates detection of mitochondrial motility and dynamics. Rat hippocampal neurons expressing mito-dsRed were 
undersampled with a confocal detector using 170 nm pixel resolution (LR) to facilitate faster frame rates, then restored with PSSR (LR-PSSR). a, before and 
after timepoints of the event shown in Fig. 5 wherein two adjacent mitochondria pass one another but cannot be resolved in the original low-resolution 
(LR) or bilinear interpolated (LR-Bilinear) image but are clearly resolved in the LR-PSSR image. b, kymographs of a LR vs LR-PSSR timelapse that facilitates 
the detection of a mitochondrial fission event (yellow arrow).
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