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Abstract 

Point scanning imaging systems (e.g. scanning electron or laser scanning confocal microscopes) are perhaps 
the most widely used tools for high resolution cellular and tissue imaging. Like all other imaging modalities, the 
resolution, speed, sample preservation, and signal-to-noise ratio (SNR) of point scanning systems are difficult 
to optimize simultaneously. In particular, point scanning systems are uniquely constrained by an inverse 
relationship between imaging speed and pixel resolution. Here we show these limitations can be mitigated via 
the use of deep learning-based super-sampling of undersampled images acquired on a point-scanning system, 
which we termed point-scanning super-resolution (PSSR) imaging. Oversampled ground truth images acquired 
on scanning electron or Airyscan laser scanning confocal microscopes were used to generate semi-synthetic 
training data for PSSR models that were then used to restore undersampled images. Remarkably, our EM 
PSSR model was able to restore undersampled images acquired with different optics, detectors, samples, or 
sample preparation methods in other labs. PSSR enabled previously unattainable xy resolution images with 
our serial block face scanning electron microscope system. For fluorescence, we show that undersampled 
confocal images combined with a multiframe PSSR model trained on Airyscan timelapses facilitates Airyscan-
equivalent spatial resolution and SNR with ~100x lower laser dose and 16x higher frame rates than 
corresponding high-resolution acquisitions. In conclusion, PSSR facilitates point-scanning image acquisition 
with otherwise unattainable resolution, speed, and sensitivity.  

Introduction 

An essential tool for understanding the spatiotemporal organization of biological systems, microscopy is nearly 
synonymous with biology itself. Like all imaging systems, microscopes suffer from the so-called “eternal 
triangle of compromise”, which dictates that image resolution, illumination intensity (and therefore sample 
damage), and imaging speed are all in tension with one another. Within a single system, it is usually 
impossible to optimize one parameter without compromising at least one of the others. This is particularly 
noticeable for point-scanning systems, e.g. scanning electron (SEM) and laser scanning confocal (LSM) 
microscopes, for which higher resolution images require higher numbers of sequentially acquired pixels to 
ensure proper sampling, thus increasing the imaging time and sample damage in direct proportion to the pixel 
resolution. In spite of these limitations, point-scanning systems remain perhaps the most common imaging 
modality in biological research labs due to their versatility and ease of use for a broad range of applications.  

“Super-resolution” deep learning has been extensively used to “super-sample” the pixels in down-sampled 
digital images, effectively increasing their resolution1. For microscopy, deep learning has long been established 
as an optimal method for image analysis and segmentation2. More recently, deep learning has been employed 
with spectacular results in restoring fluorescence microscopy images from relatively noisy, low optical 
resolution acquisitions to high resolution outputs that have a high signal-to-noise ratio (SNR)3-7. Here we show 
that deep learning-based restoration of 16x undersampled images facilitates faster, lower dose imaging on 
both SEM and scanning confocal microscopes, which in turn allows for 16x higher imaging speeds, ≥16x lower 
sample damage, and 16x smaller raw image file sizes due to the 16x smaller number of pixels acquired. Thus, 
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the Point Scanning Super-Resolution (PSSR) approach provides a strategy for increasing the spatiotemporal 
resolution of point scanning imaging systems to previously unattainable levels due to limitations imposed by 
sample damage or imaging speed when imaging at full pixel resolution. 

Results 

Three-dimensional electron microscopy (3DEM) is a powerful technique for determining the volumetric 
ultrastructure of tissues, which is invaluable for connectomics research. In addition to serial section EM 
(ssEM)8 and focused ion beam SEM (FIB-SEM)9, one of the most common tools for high throughput 3DEM 
imaging is serial blockface scanning electron microscopy (SBFSEM)10, wherein a built-in ultramicrotome 
iteratively cuts ultrathin sections (usually between 50 - 100 nm) off the surface of a blockface after it was 
imaged with a scanning electron probe. This method facilitates relatively automated, high-throughput 3DEM 
imaging with minimal post-acquisition image alignment. Unfortunately, higher electron doses cause sample 
charging, which renders the sample too soft to section and image reliably (Supplementary Movie 1). 
Furthermore, the extremely long imaging times and large file sizes inherent to high resolution 3DEM imaging of 
relatively large volumes present a significant bottleneck for many labs. Thus, most 3DEM datasets are 
acquired with sub-Nyquist sampling (e.g. pixel sizes ≥ 4 nm), which precludes the reliable detection or analysis 
of smaller subcellular structures, such as ~35 nm presynaptic vesicles. While undersampled 3DEM datasets 
can be suitable for many analyses, it would be useful to be able to mine targeted regions of these large 
datasets for higher resolution ultrastructural information. Unfortunately, many 3DEM imaging approaches are 
destructive, and high resolution ssEM can be slow and laborious. Thus, the ability to computationally increase 
the resolution of these datasets is of high value and broad utility. 

Frustrated by our inability to perform SBFSEM imaging with the desired 2 nm resolution and SNR necessary to 
reliably detect presynaptic vesicles, we decided to test whether a deep convolutional neural net model (PSSR) 
trained on 2 nm high resolution (HR) images could “super-resolve” 8 nm low resolution (LR) images to 2 nm 
resolution (Fig. 1). To train a model for this purpose, many perfectly aligned high- and low-resolution image 
pairs are required. Instead of manually acquiring high- and low-resolution image pairs for training, we opted to 
generate semi-synthetic training data by computationally “crappifying” high-resolution images to simulate what 
their low-resolution counterparts might look like when acquired at the microscope. For this purpose we used  
~130 GB training data of 2 nm pixel transmission-mode scanning electron microscope (tSEM11) images of 40 
nm ultrathin sections from the hippocampus of a Long Evans male rat. To generate semi-synthetic training 
pairs, we applied aggressive downsampling and degradation filters to our HR data, including heavy gaussian 
blur, random pixel shifts, and random salt-and-pepper noise in addition to 16x downsampling of the pixel 
resolution. We then trained our image pairs on a ResNet-based U-Net model (Fig. 1a – see Methods and 
Supplemental Tables for full details). Using a Mean Squared Error (MSE) loss function yielded excellent results 
as determined by visual inspection and Peak-Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) 
measurements. The PSSR-restored images from our semi-synthetic pairs contained more detail and yet 
displayed less noise, making it easier to discern fine details such as presynaptic vesicles (Fig. 1b). We next 
tested whether our PSSR model was effective on “real-world” LR images. Usually deep learning-based image 
restoration models are extremely sensitive to variations in image properties, precluding the use of a model 
generated from training images acquired in one condition on images acquired in another (i.e. data generated 
using a different sample preparation technique, type, or on a different microscope). As mentioned above, our 
training images were generated from 40 nm sections acquired with a tSEM detector. But for our testing data, 
we acquired HR and LR images of 80 nm sections imaged with a backscatter detector. Based on several 
metrics including PSNR, SSIM (Fig. 1), NanoJ-SQUIRREL error mapping analysis (Supplementary Fig. 1)12, 
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and visual inspection, we found PSSR very 
effectively restored the low resolution images (Fig. 
1c). Thus, our PSSR model is not restricted to data 
acquired in the exact same modality as our training 
set.  

We next tested whether we could sufficiently restore 
8 nm SBFSEM datasets to 2 nm using PSSR, since 2 
nm SBFSEM imaging is currently impossible for us to 
achieve. Using our PSSR model we were able to 
restore an 8 nm pixel SBFSEM 3D dataset to 2 nm 
(Fig. 2a, Supplementary Movie 2). Remarkably, our 
PSSR model also worked very well on mouse, rat, 
and fly samples imaged on four different microscopes 
in four different labs (Fig. 2a-d). In addition to our 
SBFSEM and SEM imaging systems, PSSR 
processing appeared to restore images acquired on 
data from a ZEISS FIB-SEM (from the Hess lab at 
Janelia Farms, Fig. 2c, Supplementary Movie 3) and 
a Hitachi Regulus FE-SEM (from the Kubota lab at 
National Institute for Physiological Sciences). 
Notably, the PSSR images were much easier to 
manually segment - a major requirement for properly 
analyzing 3DEM datasets (Supplementary Movie 4). 
PSSR processing also performed well on a 10x10x10 
nm resolution FIB-SEM fly brain dataset, resulting in 
a 2 x 2 x 10 nm resolution dataset with higher SNR 
and resolution (Fig. 2b). Thus, PSSR can be used for 
at least 25x super-sampling with useful results, 
increasing the lateral resolution and speed of FIB-
SEM imaging by a factor of at least 25x.  

One major concern with deep learning-based image 
processing is accuracy, and in particular the 
possibility of false positives (aka 
“hallucinations”)2,3,13,14. As mentioned above, 2 nm 
pixel SBFSEM datasets are beyond the capabilities 
for our samples and detector, precluding the 
generation of ground truth validation images for our 
SBFSEM data. Given the need to be able to trust 
processed datasets for which no “ground truth” data 
exists, we next decided to determine whether our 
PSSR output is sufficiently accurate for useful 
downstream analysis. To do this, we manually 
acquired low 8 nm and high 2 nm pixel resolution 
SEM image pairs of ultrathin sections, then 16x 
super-sampled the 8 nm pixel images (LR) to 2 nm 
pixel images (HR) using either bilinear interpolation 
(LR-Bilinear) or PSSR (LR-PSSR). We then 
measured the PSNR and SSIM of LR-Bilinear and 
LR-PSSR and found that LR-PSSR significantly 
outperforms LR-Bilinear. To further test the accuracy 
and utility of the PSSR output in a more concrete, 
biological context, we next randomized LR-Bilinear, 
LR-PSSR, and HR images, then distributed them to 
two blinded human experts for manual segmentation 
of 35 nm presynaptic vesicles. We found that the LR-

Fig. 1 | Restoration of semi-synthetic and real-world EM testing data 
using PSSR model trained on semi-synthetically generated training 
pairs. a, Overview of the general workflow. Training pairs were semi-
synthetically created by applying a degrading function to the HR images 
taken from a scanning electron microscope in transmission mode (tSEM) to 
generate LR counterparts (left column). Semi-synthetic pairs were used as 
training data through a dynamic ResNet-based U-Net architecture (middle 
column). Real-world LR and HR image pairs were both manually acquired 
under a SEM (right column). The output from PSSR (LR-PSSR) when LR is 
served as input is then compared to HR to evaluate the performance of our 
trained model. b, Restoration performance on semi-synthetic testing pairs 
from tSEM. Shown is the same field of view of a representative bouton 
region from the synthetically created LR input with the pixel size of 8 nm (left 
column), a 16x bilinear upsampled image with 2 nm pixel size (second 
column), 16x PSSR upsampled result with 2 nm pixel size (third column) and 
the HR ground truth acquired at the microscope with the pixel size of 2 nm 
(right column). A close view of the same vesicle in each image is highlighted. 
c, Restoration results of manually acquired SEM testing pairs. Shown is the 
comparison of the LR input acquired at the microscope with a pixel size of 8 
nm (left column), 16x bilinear upsampled image (second column), 16x PSSR 
upsampled output (third column) and the HR ground truth acquired at the 
microscope with the pixel size of 2 nm (right column). Bottom row compares 
the zoomed-in region of a bouton with one vesicle highlighted. d, The Peak-
Signal-to-Noise-Ratio (PSNR) and the Structural Similarity (SSIM) 
quantification of the semi-synthetic as well as the real-world testing sets 
discussed in (b) and (c). The metrics were calculated between an upsampled 
result and its corresponding HR ground truth. All values are shown as mean 
± SEM. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001; Paired t-test. 
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PSSR segmentation was significantly more accurate 
than the LR-Bilinear (Fig. 2e). Interestingly, while the 
LR-PSSR output reduced false negatives by ~300%, 
the LR-PSSR output had a slightly higher number of 
“false positives” than the LR-Bilinear. However, since 
our HR data is noisier than both the training data as 
well as the LR-PSSR output, it is possible that not all of 
our false positives are truly false. Most importantly, the 
variance between the LR-PSSR and HR results was 
similar to the variance between the two expert human 
results on HR data (Fig. 2e), which is probably very 
near maximum possible accuracy and precision. Taken 
together, our data reveal PSSR to be a viable method 
for producing 2 nm 3DEM data from 8 nm resolution 
acquisitions, revealing important subcellular structures 
that are otherwise lost in many 3DEM datasets. 
Furthermore, the ability to reliably 16x super-sample 
lower resolution datasets presents an opportunity to 
increase the throughput of SEM imaging by at least 
one order of magnitude.  

Similar to SBFSEM, laser scanning confocal 
microscopy also suffers from a direct relationship 
between pixel resolution and sample damage (i.e. 
phototoxicity/photobleaching)15. This can be a major 
barrier for cell biologists who wish to study the 
dynamics of smaller structures such as mitochondria, 
which regularly undergo fission and fusion, but also 
show increased fission and swelling in response to 
phototoxicity (Supplementary Movie 5, Supplementary 
Fig. 3). In extreme cases, phototoxicity can cause cell 
death, which is incompatible with live cell imaging 
(data not shown). HR scanning confocal microscopy 
also suffers from the direct relationship between pixel 
resolution and imaging time, making live cell imaging 
of faster processes (e.g. organelle motility in neurons) 
challenging (Supplementary Movie 7). Thus, we sought 
to determine whether PSSR might provide a viable 
strategy for increasing the speed and reducing the 
phototoxicity of live scanning confocal microscopy.  

To generate our ground truth training and testing 
dataset we used a ZEISS Airyscan LSM 880, an 
advanced confocal microscope that uses a 32-detector 

array and post-processing pixel reassignment to generate images ~1.7x higher in resolution (~120 nm) and 
~8x higher SNR than a standard confocal system. All HR ground truth and training data were acquired with a 
63x objective with at least 2x Nyquist pixel size (~50 ± 10 nm), then Airyscan processed (pixel reassignment) 
using ZEISS Zen software. Similar to our EM model, semi-synthetic LR training data was generated by 
computationally degrading HR Airyscan images with random noise and blur. For our LR test data, we acquired 
images at 16x lower pixel resolution (170 nm) with a 2.5 AU pinhole on a PMT confocal detector, without any 
additional image processing. We maintained equal pixel dwell time for the HR vs. LR testing acquisitions. We 
also decreased the laser power for our LR acquisitions by a factor of 4 or 5 (see Supplemental Tables for more 
details), resulting in a net laser dose decrease of ~64x - 90x (e.g., 5x lower laser power and 16x shorter 
exposure time yields a 90x lower laser dose). Furthermore, our LR testing data was not deconvolved and used 
a much larger effective pinhole size than the HR Airyscan ground truth data. Thus, low resolution, low SNR, 
undersampled confocal images would need to be restored to oversampled, high SNR, high resolution Airyscan 
image quality. 

Fig. 2 | PSSR model is effective for multiple EM modalities and 
sample types. Shown are representative low resolution (LR), bilinear 
interpolated (LR-Bilinear) and PSSR-restored (LR-PSSR) images from 
mouse brain sections imaged with a ZEISS Sigma-VP Gatan Serial 
Blockface SEM system (a), fly sections acquired with ZEISS/FEI focused 
ion beam-SEM (FIB-SEM) (b), mouse sections from ZEISS/FEI FIB-SEM 
(c) and rat sections imaged with a Hitachi Regulus serial section EM 
(ssEM) (d). e, Validation of pre-synaptic vesicle detection. LR, LR-Bilinear, 
LR-PSSR, and ground truth high resolution (HR) images of a 
representative bouton region as well as their color-labeled vesicle counts 
are shown. Vesicles colored with red represents false negatives, blue are 
false positives, and white are true positives. The percentage of each type 
of counts is shown in the pie chart. Docked vesicles were labelled with 
purple dots. A plot of the vesicle counts for two expert humans (light blue 
and dark blue) for all 3 image sets is shown on the left. The linear 
regression between LR-Bilinear and HR, LR-PSSR and HR, and two 
human counters of HR are shown in the third row. The equation for the 
linear regression, the Goodness-of-Fit (R2) and the p-value (p) of each 
graph are displayed. Scale bars = 1.5 µm. 
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To start, we trained on live cell timelapses of mitochondria in U2OS cells. As expected, imaging at full 
resolution (~49 nm pixels) resulted in significant bleaching and phototoxicity-induced mitochondrial swelling 
and fission (Supplementary Movie 5). However, the LR (~196 nm pixels) acquisitions were extremely noisy and 
pixelated due to undersampling. On the other hand, the LR scans showed far less photobleaching when 
imaged at the same frame rate and duration (Supplementary Fig. 2). PSSR processing reduced the noise and 
increased the resolution of the LR acquisitions, as determined by testing on both semi-synthetic and real-world 
low versus high resolution image pairs (Fig. 3b-c). To further improve the performance of PSSR for timelapse 
data, we exploited the spatiotemporal continuity of live imaging data and the multi-dimensional capabilities of 
our PSSR ResU-Net architecture by training on 5 timepoints at a time (MultiFrame-PSSR, or “PSSR-MF”, Fig. 
3a). As measured by PSNR, SSIM, and NanoJ-SQUIRREL error mapping, PSSR-MF processing of LR 
acquisitions (LR-PSSR-MF) showed significantly increased resolution and SNR compared to the raw input 
(LR), 16x bilinear interpolated input (LR-Bilinear), or single-frame PSSR (LR-PSSR-SF) (Fig. 3b-c, 
Supplementary Fig. 3). Thus, for all time-lapse PSSR we used PSSR-MF and refer to it as PSSR for the 

Fig. 3 | Multi-frame PSSR confocal-to-Airyscan super-resolution timelapses of mitochondrial dynamics. a, Overview of multi-frame PSSR 
training data generation method. Five consecutive frames (!"#, % ∈ [( − 2, ( + 2]) from a HR Airyscan time-lapse movie were synthetically crappified to 
five LR images (-"#, % ∈ [( − 2, ( + 2]), which together with the HR middle frame at time ( (!".), form a five-to-one training “pair”. b, Restoration 
performance on semi-synthetic and real-world testing pairs. For the semi-synthetic pair, LR was synthetically generated from Airyscan HR movies. 
Enlarged ROIs show an example of well resolved mitochondrial structures by PSSR, agreeing with Airyscan ground truth images. Multi-frame PSSR 
(LR-PSSR-MF) further improves the accuracy beyond the standard single-frame PSSR (LR-PSSR-SF) model. Red arrowheads show a false breaking 
point in LR-Bilinear and LR-PSSR-SF, which was well preserved in LR-PSSR-MF. For the real-world example, ten images of fixed samples were 
sequentially acquired using a standard confocal (LR) versus an Airyscan (HR) detector with the same pixel dwell time, but 5x lower laser power for the 
LR acquisition and 16x lower xy pixel resolution, yielding a net reduction in laser dose of ~90x. The green arrowheads in the enlarged ROIs highlight a 
well restored gap between two mitochondria segments in the LR-PSSR-MF output. Normalized line-plot cross-section profile (yellow) highlights false 
bridging between two neighboring structures in LR-Bilinear and LR-PSSR-SF, which was well separated with our PSSR-MF model. Signal-to-noise 
Ratio (SNR) measured using the images in both semi-synthetic and real-world examples are indicated. Fourier Ring Correlation (FRC) values 
measured using two independent acquisitions from the real-world example are indicated. c, PSNR and SSIM quantification of the semi-synthetic as 
well as the real-world testing sets discussed in (b). d, PSSR output captured a transient mitochondrial fission event. Shown is a PSSR-restored 
dynamic mitochondrial fission event, with three key time frames displayed. Arrows highlight the mitochondrial fission site. All values are shown as 
mean ± SEM. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001; Paired t-test. 
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remainder of this article. The improved speed, 
resolution, and SNR enabled us to detect 
mitochondrial fission events that were not detectable 
in the LR or LR-Bilinear images (yellow arrows, Fig. 
3d, Supplementary Movie 6). Additionally, the 
relatively high laser dose during HR acquisitions raises 
questions as to whether observed fission events are 
artifacts of phototoxicity. Thus, PSSR provides an 
opportunity to detect very fast mitochondrial fission 
events with fewer phototoxicity-induced artifacts than 
standard high resolution Airyscan imaging using 
normal confocal optics and detectors.   

In addition to phototoxicity issues, the slow speed of 
HR scanning confocal imaging results in temporal 
undersampling of fast-moving structures such as 
motile mitochondria in neurons (Supplementary Fig. 4, 
Supplementary Movie 8). However, relatively fast LR 
scans do not provide sufficient pixel resolution or SNR 
to resolve fission or fusion events, or individual 
mitochondria when they pass one another along an 
axon, which can result in faulty analysis or data 
interpretation (Supplementary Movie 7). Thus, we next 
tested whether PSSR provided sufficient restoration of 
undersampled time-lapse imaging of mitochondrial 
trafficking in neurons.  

The overall resolution and SNR improvement provided 
by PSSR enabled us to resolve adjacent mitochondria 
moving in an axon, as well as mitochondrial fission 
and fusion events (Fig. 4a and 4c, Supplementary Fig. 
5, Supplementary Movie 8). Since our LR acquisition 
rates are 16x faster than HR, instantaneous motility 
details were preserved in LR-PSSR whereas in HR 
images they were lost (Fig. 4d, Supplementary Fig. 4, 
Supplementary Movie 8). The overall total distance 
mitochondria travelled in axons was the same for both 
LR and HR (Fig. 4f). However, we were able to obtain 
unique information about how they translocate by 
imaging at a 16x higher frame rate (Fig. 4g). 
Interestingly, a larger range of velocities was identified 
in LR-PSSR than both LR and HR images. Small 
distances travelled were easy to define in our LR-
PSSR images, and therefore there was an overall 
reduction in percent time mitochondria spent in the 
stopped position in our LR-PSSR data (Fig. 4h). 
Overall, LR-PSSR and HR provided similar values for 
the percent time mitochondria spent in motion (Fig. 
4i). Taken together, these data show PSSR provides 
a means to detect critical biological events that would 
not be possible on our confocal system with standard 
HR or LR imaging.  

Discussion 

It is important to consider that any output from a deep 
learning super-resolution model is a prediction and is 

Fig. 4 | Spatiotemporal analysis of mitochondrial motility in neurons. 
PSSR provides high spatiotemporal resolution for mitochondrial motility in 
neurons. a, Comparison of PSSR results (LR-PSSR) versus bilinear 
interpolation (LR-Bilinear) on semi-synthetic and real-world testing pairs. 
Enlarged ROIs from representative images show PSSR resolved two 
neighboring mitochondria in both semi-synthetic and real-world testing sets, 
quantified by normalized line plot cross-section profiles. SNR and FRC 
measured from two independent acquisitions of the real-world overview 
images are indicated. b, PSNR and SSIM quantification of the datasets in (a). 
c, PSSR restoration of LR timelapses resolves neighboring mitochondria 
moving past one another in an axon (arrows indicate direction of movement). 
d, Representative kymographs of axonal mitochondrial motility in 
hippocampal neurons transfected with Mito-dsRed. First frame of each time-
lapse movie is shown above each kymograph. Different color arrowheads 
indicate mitochondria going through fission and fusion events. Each color 
represents a different mitochondrion. e, Enlarged areas of (d), capturing 
mitochondrial fission and fusion events in real-time. f-i, Mitochondrial motility 
was quantified from time-lapse movies as demonstrated in Supplementary 
Fig. 4. For each mitochondrial trajectory the total distance mitochondria 
traveled f, mitochondrial velocity g, percent time mitochondria spent in motion 
(h) and in pause (i) was quantified. n = 76 - 216 mitochondria from 4 axons 
and 3 independent transfections. Scale bars = 5 μm and 10 s. All values are 
shown as mean ± SEM. ns = not significant. *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001; Kruskal-Wallis test.  
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never 100% accurate and always highly dependent on correspondence between the training versus testing 
data2,3,14,16. Whether the level of accuracy of a given model for a given dataset is sufficient is ultimately 
dependent on the tolerance for error in the system or hypothesis being tested. Though the accuracy of PSSR 
is technically lower than “ground truth” data, multiple real-world limitations on acquiring ground truth data may 
render PSSR the best option. Taken together, our results show the PSSR approach can in principle enable 
higher speed and resolution imaging with sufficient fidelity for transformative scientific research. All point 
scanning imaging systems have a direct relationship between pixel resolution and imaging time, sample 
damage, SNR, and structural detail. Thus, the ability to use deep learning to super-sample under-sampled 
images provides an opportunity that extends to other point scanning systems, for example ion-based imaging 
systems or high resolution cryoSTEM, both of which we did not have access to for testing but would expect 
similarly positive results.  

Interestingly, our semi-synthetic LR images were lower quality than our manually acquired LR data. Our real-
world LR images were acquired with the same pixel dwell time as our HR data, resulting in 16x lower signal for 
our real-world LR images. At the same time, our HR-tSEM training data was higher quality than our real-world 
validation dataset acquired on an SEM. This strategy of generating a model that can restore lower quality data 
than needed to a higher quality than possible on our system appears to be an effective strategy for ensuring 
the model can perform reasonably well with a wider range of real world data, including “out-of-network” data. 
Most importantly, the ability to “crappify” ground truth data to generate semi-synthetic pairs for training a model 
to simultaneously denoise, deconvolve, and super-sample imaging data greatly increases the throughput for 
generating training data. Indeed, any pre-existing high resolution, high SNR dataset can in theory be used as 
training data for a deep learning-based image restoration model. 

It should be noted that we did not employ feature loss in our model – for this proof of principle study we wished 
to generate models that were relatively “naïve” to the particular structures of interest, depending only on pixel-
to-pixel information for training and inference. It is of course expected that employing feature loss will improve 
the resolution and SNR capabilities of a PSSR model, but that would also come with a tradeoff – the more 
specific the features, the less versatile the model. However, using both transfer learning and feature loss 
presents a practical strategy for optimizing a model for use on a specific dataset. For future studies, we 
propose an acquisition scheme wherein a relatively limited number of “ground truth” HR images are acquired 
for fine tuning the model either before or after acquiring the experimental data.  

Deconvolution methods including structured illumination microscopy, single-molecule localization microscopy, 
and pixel reassignment microscopy demonstrate the power of configuring optical imaging systems and 
acquisition schemes with a specific post-processing computational strategy in mind. The power of deep 
convolutional neural networks for processing image data presents a new opportunity for redesigning imaging 
systems to exploit these capabilities in order to minimize costs traditionally considered necessary for extracting 
meaningful imaging data. Similarly, automated, real-time corrections to the images and real-time feedback to 
the imaging hardware are now easily within reach. This is an area of active investigation in our laboratory and 
others (Lu Mi, Yaron Meirovitch, Jeff Lichtman, Aravinthan Samuel, Nir Shavit, personal communication).  

Methods 

Semi-synthetic Training Image Generation 
 
HR images were acquired using scanning electron or Airyscan confocal microscopes. Due to the variance of 
image properties (e.g. format, size, dynamic range and depth) in the acquired HR images, data cleaning is 
indispensable for generating training sets that can be easily accessed during training. In this article, we 
differentiate the concept of “data sources” and “data sets”, where data sources refer to uncleaned acquired 
high resolution images, while data sets refer to images that are generated and preprocessed from data 
sources. HR data sets were obtained after preprocessing HR images from data sources, LR data sets were 
generated from HR data sets using a “crappifier” function. 
 
Preprocessing. Tiles of predefined sizes (e.g. 256 x 256 and 512 x 512 pixels) were randomly cropped from 
each frame in image stacks from HR data sources. All tiles were saved as separate images in .tif format, which 
together formed a HR data set.  
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Image Crappification. A “crappifier” was then used to synthetically degrade the HR data sets to LR images, 
with the goal of approximating the undesired and unavoidable pixel intensity variation in real-world low 
resolution and low SNR images of the same field of view directly taken under an imaging system. These HR 
images together with their corrupted counterparts served as training pairs to facilitate “deCrappification”. The 
crappification function can be simple, but it materially improves both the quality and characteristics of PSSR 
outputs.  
 
Image sets were normalized from 0 to 1 before being 16x downsampled in pixel resolution (e.g. a 1000 x 1000 
pixel image would be downsampled to 250 x 250 pixels). To mimic the image quality degradation caused by 
16x undersampling on a real-world point scanning imaging system, salt-and-pepper noise, and Gaussian 
additive noise with specified local variance were randomly injected into the high-resolution images. The 
degraded images were then rescaled to 8-bit for viewing with normal image analysis software.  
 
EM Crappifier 
Random Gaussian-distributed additive noise (012 = 0, 512 = 3) was injected. The degraded images were then 
downsampled using spline interpolation of order 1. 
 
MitoTracker and Neuronal Mitochondria Crappifier 
The crappification of MitoTracker and neuronal mitochondria data followed a similar procedure. Salt-and-
pepper noise was randomly injected in 0.5% of each image’s pixels replacing them with noise, which was 
followed by the injection of random Gaussian-distributed additive noise (0782 = 0, 5782 = 5). The crappified 
images were then downsampled using spline interpolation of order 1. 
 
Data Augmentation. After crappified low-resolution images were generated, we used data augmentation 
techniques such as random cropping, dihedral affine function, rotation, random zoom to increase the variety 
and size of our training data17.  
 
Multi-frame Training Pairs. Unlike imaging data of fixed samples, where we use traditional one-to-one high- 
and low- resolution images as training pairs, for time-lapse movies, five consecutive frames (!"#, % ∈
[( − 2, ( + 2]) from a HR Airyscan time-lapse movie were synthetically crappified to five LR images (-"#, % ∈
[( − 2, ( + 2]), which together with the HR middle frame at time ( (!".), form a five-to-one training “pair”. The 
design of five-to-one training “pairs” leverages the spatiotemporal continuity of dynamic biological behaviors. 
(Fig. 3a). 
 
Neural Networks 
 
Single-frame Neural Network (PSSR-SF). A ResNet-based U-Net was used as our convolutional neural 
network for training18. Our U-Net is in the form of encoder-decoder with skip-connections, where the encoder 
gradually downsizes an input image, followed by the decoder upsampling the image back to its original size. 
For the EM data, we utilized ResNet pretrained on ImageNet as the encoder. For the design of the decoder, 
the traditional handcrafted bicubic upscaling filters are replaced with learnable sub-pixel convolutional layers19, 
which can be trained specifically for upsampling each feature map optimized in low-resolution parameter 
space. This upsampling layer design enables better performance and largely reduces computational 
complexity, but at the same time causes unignorable checkerboard artifacts due to the periodic time-variant 
property of multirate upsampling filters20.  A blurring technique21 and a weight initialization method known as 
“sub-pixel convolution initialized to convolution neural network resize (ICNR)”22 designed for the sub-pixel 
convolution upsampling layers were implemented to remove checkerboard artifacts. In detail, the blurring 
approach introduces an interpolation kernel of the zero-order hold with the scaling factor after each upsampling 
layer, the output of which gives out a non-periodic steady-state value, which satisfies a critical condition 
ensuring a checkerboard artifact-free upsampling scheme21. Compared to random initialization, in addition to 
the benefit of removing checkerboard artifacts, ICNR also empowers the model with higher modeling power 
and higher accuracy22. A self-attention layer inspired by Zhang et al.23  was added after each convolutional 
layer to restore high-frequency details by leveraging larger receptive fields that relate to object shapes. Unlike 
traditional convolutional neural networks which only use local spatial information to generate high-resolution 
details, self-attention layers enable global feature extraction to maximize object continuity and consistency.  
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Multi-frame Neural Network (PSSR-MF). A similar yet slightly modified U-Net was used for time-lapse movie 
training. The input layer was redesigned to take five frames simultaneously while the last layer still produced 
one frame as output. 
 
Training Details 
 
Loss Function. MSE loss was used as our loss function. 
 
Optimization Methods. Stochastic gradient descent with restarts (SGDR)24 was implemented. Aside from the 
benefits we are able to get through classic stochastic gradient descent, SGDR resets the learning rate to its 
initial value at the beginning of each training epoch and allows it to decrease again following the shape of a 
cosine function, yielding lower loss with higher computational efficiency.  
 
Cyclic Learning Rate and Momentum. Instead of having a gradually decreasing learning rate as the training 
converges, we adopted cyclic learning rates25, cycling between upper bound and lower bound, which helps 
oscillate towards a higher learning rate, thus avoiding saddle points in the hyper-dimensional training loss 
space. In addition, we followed The One Cycle Policy26, which restricts the learning rate to only oscillate once 
between the upper and lower bounds. Specifically, the learning rate linearly increases from the lower bound to 
the upper bound as the momentum decreases from its upper bound to the lower bound linearly. In the second 
half of the cycle, the learning rate fits a cosine annealing decreasing from the upper bound to zero while the 
momentum increases from its lower bound to the upper bound following the same annealing. This training 
technique achieves superior regularization by preventing the network from overfitting during the middle of the 
learning process, as well as enables super-convergence27 by allowing large learning rates and adaptive 
momentum.  
 
Progressive Resizing (used for EM data only). Progressive resizing was applied during the training of the 
EM model. Training was executed in two rounds with HR images scaled to xy pixel sizes of 256 x 256 and 512 
x 512 and LR images scaled to 64 x 64 and 128 x 128 progressively. The first round was initiated with an 
ImageNet pretrained ResU-Net, and the model trained from the first round served as the pre-trained model for 
the second round. The intuition behind this is it quickly reduces the training loss by allowing the model to see 
lots of images at a small scale during the early stages of training. As the training progresses, the model 
focuses more on picking up high-frequency features reflected through fine details that are only stored within 
larger scale images. Therefore, features that are scale-variant can be recognized through the progressively 
resized learning at each scale. 
 
Best Model Preservation (used for fluorescence data only). Instead of saving the last model after training a 
fixed number of epochs, at the end of each training epoch, PSSR checks if the validation loss goes down 
compared to the loss from the previous epoch and will only update the best model when a lower loss is found. 
This technique ensures the best model will never be missed due to local loss fluctuation during the training.  
 
Elimination of Tiling Artifacts. Testing images often need to be cropped into smaller tiles before being fed 
into our model due to the memory limit of graphic cards. This creates tiling edge artifacts around the edges of 
tiles when stitching them back to the original images. A Gaussian blur kernel (0.#:; = 0, 5.#:; = 1) was applied 
to a 10-pixel wide rectangle region centered in each tiling edge to eliminate the artifacts.  
 
Technical specifications. Final models were generated using fast.ai v1.0.55 library 
(https://github.com/fastai/fastai), PyTorch on two NVIDIA TITAN RTX GPUs. Initial experiments were 
conducted using NVIDIA Tesla V100s, NVIDIA Quadro p6000s, NVIDIA Quadro M5000s, NVIDIA Titan Vs, 
NVIDIA GeForce GTX 1080s, or NVIDIA GeForce RTX 2080Ti GPUs. 
 
Evaluation Metrics 
 
PSNR and SSIM quantification. Two classic image quality metrics, PSNR and SSIM, known for their 
properties of pixel-level data fidelity and perceptual quality fidelity correspondingly, were used for the 
quantification of our paired testing image sets. 
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PSNR is inversely correlated with MSE, numerically reflecting the pixel intensity difference between the 
reconstruction image and the ground truth image, but it is also famous for poor performance when it comes to 
estimating human perceptual quality. Instead of traditional error summation methods, SSIM is designed to 
consider distortion factors like luminance distortion, contrast distortion and loss of correlation when interpreting 
image quality28. 
 
SNR quantification. SNR was quantified for LSM testing images (Fig. 3b and Fig. 4a) by: 
 

=>" =	
@2AB − 0CD

5CD
 

 
where @2AB represents the maximum intensity value in the image, 0CD and 5CD represent the mean and the 
standard deviation of the background, respectively4. 
 
Fourier-Ring-Correlation (FRC) analysis. NanoJ-SQUIRREL12 was used to calculate image resolution using 
FRC method on real-world testing examples with two independent acquisitions of fixed samples (Fig. 3b and 
Fig. 4a).  
 
Resolution Scaled Error (RSE) and Resolution Scaled Pearson’s coefficient (RSP).  NanoJ-SQUIRREL12 
was used to calculate the RSE and RSP for both semi-synthetic and real-world acquired low (LR), bilinear 
interpolated (LR-Bilinear), and PSSR (LR-PSSR) images versus ground truth high resolution (HR) images. 
Difference error maps were also calculated (Supplementary Fig. 1 and 3). 
 
EM Imaging and Analysis 
 
tSEM high resolution training data acquisition. Tissue from a perfused 7-month old Long Evans male rat 
was cut from the left hemisphere, stratum radiatum of CA1 of the hippocampus. The tissue was stained, 
embedded, and sectioned at 45 nm using previously described protocols29. Sections were imaged using a 
STEM detector on a ZEISS Supra 40 scanning electron microscope with a 28 kV accelerating voltage and an 
extractor current of 102 µA (gun aperture 30 µm). Images were acquired with a 2 nm pixel size and a field size 
of 24576 x 24576 pixels with Zeiss ATLAS. The working distance from the specimen to the final lens was 3.7 
mm, and the dwell time was 1.2 µs.  
 
EM testing sample preparation and image acquisition. EM data sets were acquired from multiple systems 
at multiple institutions for this study. 
 
For our testing ground truth data, paired LR and HR images of the adult mouse hippocampal dentate gyrus 
middle molecular layer neuropil were acquired from ultrathin sections (80 nm) collected on silicon chips and 
imaged in a ZEISS Sigma VP FE-SEM8. All animal work was approved by the Institutional Animal Care and 
Use Committee (IACUC) of the Salk Institute for Biological Studies. Samples were prepared for EM according 
the NCMIR protocol30. Pairs of 4 x 4 µm images were collected from the same region at pixels sizes of both 8 
nm and 2 nm using Fibics ATLAS software (InLens detector; 3 kV; dwell time, 5.3 µs; line averaging, 2; 
aperture, 30 µm; working distance, 2 mm).  
 
Serial block face scanning electron microscope images were acquired with a Gatan 3View system installed on 
the ZEISS Sigma VP FE-SEM. Images were acquired using a pixel size of 8 nm on a Gatan backscatter 
detector at 1 kV and a current of 221 pA. The pixel dwell time was 2 µs with an aperture of 30 µm and a 
working distance of 6.81 mm. The section thickness was 100 nm and the field of view was 24.5 x 24.5 µm. 
 
Mouse FIB-SEM data sample preparation and image acquisition settings were previously described in the 
original manuscript the datasets were published9. Briefly, the images were acquired with 4 nm voxel resolution. 
We downsampled the lateral resolution to 8 nm, then applied our PSSR model to the downsampled data to 
ensure the proper 8-to-2 nm transformation for which the PSSR was trained.  
 
Fly FIB-SEM data sample preparation and image acquisition settings were previously described in the original 
manuscript the datasets were published31. Briefly, images were acquired with 10 nm voxel resolution. We first 
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upsampled the xy resolution to 8 nm using bilinear interpolation, then applied our PSSR model to the 
upsampled data to ensure the proper 8-to-2 nm transformation for which the PSSR model was originally 
trained. 
 
The rat SEM data sample was acquired from an 8-week old male Wistar rat that was anesthetized with an 
overdose of pentobarbital (75 mg kg-1) and perfused through the heart with 5 - 10 ml of a solution of 250 mM 
sucrose 5 mM MgCl2 in 0.02 M phosphate buffer (pH 7.4) (PB) followed by 200 ml of 4% paraformaldehyde 
containing 0.2% picric acid and 1% glutaraldehyde in 0.1 M PB. Brains were then removed and oblique 
horizontal sections (50 µm thick) of frontal cortex/striatum were cut on a vibrating microtome (Leica VT1200S, 
Nussloch, Germany) along the line of the rhinal fissure. The tissue was stained and cut to 50 nm sections 
using ATUMtome (RMC Boeckeler, Tucson, USA) for SEM imaging using the protocol described in the original 
publication for which the data was acquired32. The Hitachi Regulus rat SEM data was acquired using a 
Regulus 8240 FE-SEM with an acceleration voltage of 1.5 kV, a dwell time of 3 µs, using the backscatter 
detector with a pixel resolution of 10 x 10 nm. We first upsampled the xy resolution to 8 nm using bilinear 
interpolation, then applied our PSSR model to the upsampled data to ensure the proper 8-to-2 nm 
transformation for which the PSSR model was originally trained. 
 
EM segmentation and analysis. Image sets generated from the same region of neuropil (LR-Bilinear; LR-
PSSR; HR) were aligned rigidly using the ImageJ plugin Linear stack alignment with SIFT33. Presynaptic 
axonal boutons (n = 10) were identified and cropped from the image set. The bouton image sets from the three 
conditions were then assigned randomly generated filenames and distributed to two blinded human experts for 
manual segmentation of presynaptic vesicles. Vesicles were identified by having a clear and complete 
membrane, being round in shape, and of approximately 35 nm in diameter. For consistency between human 
experts, vesicles that were embedded in or attached to obliquely sectioned axonal membranes were excluded. 
Docked and non-docked synaptic vesicles were counted as separate pools.  
Vesicle counts were recorded and unblinded and grouped by condition and by expert counter. Linear 
regression analyses were conducted between the counts of the HR images and the corresponding images of 
the two different LR conditions (LR-Bilinear; LR-PSSR) to determine how closely the counts corresponded 
between the HR and LR conditions. Linear regression analysis was also used to determine the variability 
between counters.  
 
Fluorescence Imaging and Analysis 
 
U2OS cell culture. U2OS cells were purchased from ATCC. Cells were grown in DMEM supplemented with 
10% fetal bovine serum at 37 °C with 5% CO2. Cells were plated onto either 8-well #1.5 imaging chambers or 
#1.5 35 mm dishes (Cellvis) coated with 10 µg/mL fibronectin in PBS at 37 °C for 30 minutes prior to plating. 
50 nM MitoTracker Deep Red or CMXRos Red (ThermoFisher) was added for 30 minutes then washed for at 
least 30 minutes to allow for recovery time before imaging in FluoroBrite (ThermoFisher) media.  

Airyscan confocal imaging of U2OS cells. Cells were imaged with a 63x 1.4 NA oil objective on a ZEISS 
880 LSM Airyscan confocal system with an inverted stage and heated incubation system with 5% CO2 control. 
For both HR and LR images, equal or lower (when indicated) laser power and equal pixel dwell time of ~1 
µs/pixel was used. High resolution Airyscan images (HR) were acquired using 2x Nyquist pixel size of 42 - 59 
nm/pixel (depending on the wavelength) in SR mode (i.e. a virtual pinhole size of 0.2 AU), then processed 
using ZEISS Zen software with auto-filter settings. Low resolution images (LR) were acquired using the same 
settings but with 0.5x Nyquist pixel size (196 nm/pixel) and a physical pinhole size of 2.5 AU. For testing 
PSSR-MF, at least 10 sequential frames of fixed samples were acquired with high- and low-resolution settings 
in order to facilitate PSSR-MF processing. 

Neuron preparation. Primary hippocampal neurons were prepared from E18 rat (Envigo) embryos as 
previously described. Briefly, hippocampal tissue was dissected from embryonic brain and further dissociated 
to single hippocampal neuron by trypsinization with Papain (Roche). The prepared neurons were plated on 
coverslips (Bellco Glass) coated with 3.33 µg/mL laminin (Life Technologies) and 20 µg/mL poly-L-Lysine 
(Sigma) at the density of 7.5 ´ 104 cells/cm2. The cells were maintained in Neurobasal medium supplemented 
with B27 (Life Technologies), penicillin/streptomycin and L-glutamine for 7 - 21 days in vitro. Two days before 
imaging, the hippocampal neurons were transfected with Lipofectamine 2000 (Life Technologies).  
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Neuronal mitochondria imaging and kymograph analysis. Live-cell imaging of primary neurons was 
performed using a Zeiss LSM 880 confocal microscope, enclosed in a temperature control chamber at 37 °C 
and 5% CO2, using a 63x (NA 1.4) oil objective in SR-Airyscan mode (i.e. 0.2 AU virtual pinhole). For low 
resolution conditions, images were acquired with a confocal PMT detector with a pinhole size of 2.5 AU at 440 
x 440 pixels at 0.5x Nyquist (170 nm/pixel) every 270.49 ms using a pixel dwell time of 1.2 µs and a laser 
power ranging between 1 - 20 µW. For high resolution conditions, images were acquired at 1764 x 1764 pixels 
at 2x Nyquist (~42 nm/pixel) every 4.33 s using a pixel dwell time of 1.2 µs and a laser power of 20 µW. 
Imaging data were collected using Zen Black software. High resolution images were further processed using 
Zen Blue’s 2D-SR Airyscan processing. Time-lapse movies were analyzed by a custom-written ImageJ macro 
Kymolyzer as described previously34. 

Fluorescence photobleaching quantification. Normalized mean intensity over time was measured using Fiji 
software. Given a time-lapse image stack with > slices, a background region was randomly selected and 
remained unchanged across frames. The normalized mean intensity (@F̅GHI

(#) ) can be expressed as: 
 

@F̅GHI
(#) =

@#̅ID
(#) − @C̅D

(#)

KLM(@#̅ID
(#) − @C̅D

(#))
, % ∈ [1, >] 

 
where % represents the frame index, @C̅D

(#) represents the mean intensity of the selected background region at 
frame % and @#̅ID

(#)  represents the intensity mean of the entire frame %.  
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Additional information 
 
Code availability: PSSR source code and documentation are available for download on GitHub 
(https://github.com/BPHO-Salk/PSSR) and are free for non-profit use. 
 
Data availability: Example training data and pretrained models are included in the GitHub release 
(https://github.com/BPHO-Salk/PSSR). In the near future, the entirety of our training and testing data sets and 
data sources will be made available via a publicly available image hosting website.  
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Figures 
 

 
Fig. 1 | Restoration of semi-synthetic and real-world EM testing data using PSSR model trained on 
semi-synthetically generated training pairs. a, Overview of the general workflow. Training pairs were semi-
synthetically created by applying a degrading function to the HR images taken from a scanning electron 
microscope in transmission mode (tSEM) to generate LR counterparts (left column). Semi-synthetic pairs were 
used as training data through a dynamic ResNet-based U-Net architecture (middle column). Real-world LR and 
HR image pairs were both manually acquired under a SEM (right column). The output from PSSR (LR-PSSR) 
when LR is served as input is then compared to HR to evaluate the performance of our trained model. b, 
Restoration performance on semi-synthetic testing pairs from tSEM. Shown is the same field of view of a 
representative bouton region from the synthetically created LR input with the pixel size of 8 nm (left column), a 
16x bilinear upsampled image with 2 nm pixel size (second column), 16x PSSR upsampled result with 2 nm 
pixel size (third column) and the HR ground truth acquired at the microscope with the pixel size of 2 nm (right 
column). A close view of the same vesicle in each image is highlighted. c, Restoration results of manually 
acquired SEM testing pairs. Shown is the comparison of the LR input acquired at the microscope with a pixel 
size of 8 nm (left column), 16x bilinear upsampled image (second column), 16x PSSR upsampled output (third 
column) and the HR ground truth acquired at the microscope with the pixel size of 2 nm (right column). Bottom 
row compares the zoomed-in region of a bouton with one vesicle highlighted. d, The Peak-Signal-to-Noise-
Ratio (PSNR) and the Structural Similarity (SSIM) quantification of the semi-synthetic as well as the real-world 
testing sets discussed in (b) and (c). The metrics were calculated between an upsampled result and its 
corresponding HR ground truth. All values are shown as mean ± SEM. *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001; Paired t-test. 
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Fig. 2 | PSSR model is effective for multiple EM modalities and sample types. Shown are representative 
low resolution (LR), bilinear interpolated (LR-Bilinear) and PSSR-restored (LR-PSSR) images from mouse 
brain sections imaged with a ZEISS Sigma-VP Gatan Serial Blockface SEM system (a), fly sections acquired 
with ZEISS/FEI focused ion beam-SEM (FIB-SEM) (b), mouse sections from ZEISS/FEI FIB-SEM (c) and rat 
sections imaged with a Hitachi Regulus serial section EM (ssEM) (d). e, Validation of pre-synaptic vesicle 
detection. LR, LR-Bilinear, LR-PSSR, and ground truth high resolution (HR) images of a representative bouton 
region as well as their color-labeled vesicle counts are shown. Vesicles colored with red represents false 
negatives, blue are false positives, and white are true positives. The percentage of each type of counts is 
shown in the pie chart. Docked vesicles were labelled with purple dots. A plot of the vesicle counts for two 
expert humans (light blue and dark blue) for all 3 image sets is shown on the left. The linear regression 
between LR-Bilinear and HR, LR-PSSR and HR, and two human counters of HR are shown in the third row. 
The equation for the linear regression, the Goodness-of-Fit (R2) and the p-value (p) of each graph are 
displayed. Scale bars = 1.5 µm. 
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Fig. 3 | Multi-frame PSSR confocal-to-Airyscan super-resolution timelapses of mitochondrial dynamics. 
a, Overview of multi-frame PSSR training data generation method. Five consecutive frames (!"#, % ∈
[( − 2, ( + 2]) from a HR Airyscan time-lapse movie were synthetically crappified to five LR images (-"#, % ∈
[( − 2, ( + 2]), which together with the HR middle frame at time ( (!".), form a five-to-one training “pair”. b, 
Restoration performance on semi-synthetic and real-world testing pairs. For the semi-synthetic pair, LR was 
synthetically generated from Airyscan HR movies. Enlarged ROIs show an example of well resolved 
mitochondrial structures by PSSR, agreeing with Airyscan ground truth images. Multi-frame PSSR (LR-PSSR-
MF) further improves the accuracy beyond the standard single-frame PSSR (LR-PSSR-SF) model. Red 
arrowheads show a false breaking point in LR-Bilinear and LR-PSSR-SF, which was well preserved in LR-
PSSR-MF. For the real-world example, ten images of fixed samples were sequentially acquired using a 
standard confocal (LR) versus an Airyscan (HR) detector with the same pixel dwell time, but 5x lower laser 
power for the LR acquisition and 16x lower xy pixel resolution, yielding a net reduction in laser dose of ~90x. 
The green arrowheads in the enlarged ROIs highlight a well restored gap between two mitochondria segments 
in the LR-PSSR-MF output. Normalized line-plot cross-section profile (yellow) highlights false bridging between 
two neighboring structures in LR-Bilinear and LR-PSSR-SF, which was well separated with our PSSR-MF 
model. Signal-to-noise Ratio (SNR) measured using the images in both semi-synthetic and real-world 
examples are indicated. Fourier Ring Correlation (FRC) values measured using two independent acquisitions 
from the real-world example are indicated. c, PSNR and SSIM quantification of the semi-synthetic as well as 
the real-world testing sets discussed in (b). d, PSSR output captured a transient mitochondrial fission event. 
Shown is a PSSR-restored dynamic mitochondrial fission event, with three key time frames displayed. Arrows 
highlight the mitochondrial fission site. All values are shown as mean ± SEM. *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001; Paired t-test.  
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Fig. 4 | Spatiotemporal analysis of mitochondrial motility in neurons. PSSR provides high spatiotemporal 
resolution for mitochondrial motility in neurons. a, Comparison of PSSR results (LR-PSSR) versus bilinear 
interpolation (LR-Bilinear) on semi-synthetic and real-world testing pairs. Enlarged ROIs from representative 
images show PSSR resolved two neighboring mitochondria in both semi-synthetic and real-world testing sets, 
quantified by normalized line plot cross-section profiles. SNR and FRC measured from two independent 
acquisitions of the real-world overview images are indicated. b, PSNR and SSIM quantification of the datasets 
in (a). c, PSSR restoration of LR timelapses resolves neighboring mitochondria moving past one another in an 
axon (arrows indicate direction of movement). d, Representative kymographs of axonal mitochondrial motility 
in hippocampal neurons transfected with Mito-dsRed. First frame of each time-lapse movie is shown above 
each kymograph. Different color arrowheads indicate mitochondria going through fission and fusion events. 
Each color represents a different mitochondrion. e, Enlarged areas of (d), capturing mitochondrial fission and 
fusion events in real-time. f-i, Mitochondrial motility was quantified from time-lapse movies as demonstrated in 
Supplementary Fig. 4. For each mitochondrial trajectory the total distance mitochondria traveled f, 
mitochondrial velocity g, percent time mitochondria spent in motion (h) and in pause (i) was quantified. n = 76 -
216 mitochondria from 4 axons and 3 independent transfections. Scale bars = 5 μm and 10 s. All values are 
shown as mean ± SEM. ns = not significant. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001; Kruskal-Wallis test.  
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Supplementary Figures 
 

 
Supplementary Fig. 1 | NanoJ-SQUIRREL error-maps of PSSR images. NanoJ-SQUIRREL was used to 
calculate the resolution scaled error (RSE) and resolution scaled Pearson’s coefficient (RSP) for both semi-
synthetic and real-world acquired low (LR), bilinear interpolated (LR-Bilinear), and PSSR (LR-PSSR) images 
versus ground truth high resolution (HR) images. For these representative images from Fig. 1, the RSE and 
RSP images are shown along with the difference images for each output. 
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Supplementary Fig. 2 | Undersampling significantly reduces photobleaching. U2OS cells stained with 
mitotracker were imaged every 2 seconds with the same laser power (2.5 µW) and pixel dwell time (~1 µs), but 
with 16x lower resolution (196 x 196 nm xy pixel size) than full resolution Airyscan acquisitions (~49 x 49 nm xy 
pixel size). Mean intensity plots show the relative rates of fluorescence intensity loss over time (i.e. 
photobleaching) for LR, LR-PSSR, and HR images. 
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Supplementary Fig. 3 | NanoJ-SQUIRREL error-maps of PSSR images. NanoJ-SQUIRREL was used to 
calculate the resolution scaled error (RSE) and resolution scaled Pearson’s coefficient (RSP) for both semi-
synthetic and real-world acquired low (LR), bilinear interpolated (LR-Bilinear), and PSSR (LR-PSSR) images 
versus ground truth high resolution (HR) images. For these representative images from Fig. 3, the RSE and 
RSP images are shown along with the difference images for each output. 
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Supplementary Fig. 4 | Kymographs of LR vs HR acquisitions. Kymographs generated from timelapses 
acquired using the same pixel dwell time at low (LR and LR-PSSR) versus high resolution (HR). Note that the 
HR acquisition was acquired at a different time than the LR acquisitions, and thus the mitochondria are in 
different positions. The kymograph of the mitochondria in the HR acquisition highlights temporal undersampling 
as evidenced by the dotted pattern of mitochondrial positions over time, in contrast to LR acquisitions wherein 
mitochondrial tracks are continuous. Scale bars = 5 µm. 
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Supplementary Fig. 5 | PSSR facilitates detection of mitochondrial motility and dynamics. Rat 
hippocampal neurons expressing mito-dsRed were undersampled with a confocal detector using 170 nm pixel 
resolution (LR) to facilitate faster frame rates, then restored with PSSR (LR-PSSR). a, before and after time 
points of the event shown in main Fig. 4 wherein two adjacent mitochondria pass one another but cannot be 
resolved in the original low resolution (LR) or bilinear interpolated (LR-Bilinear) image but are clearly resolved 
in the LR-PSSR image. b, kymographs of a LR vs LR-PSSR timelapse that facilitates the detection of a 
mitochondrial fission event (yellow arrow). 
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Supplementary Movie 1.  
Comparison of high- and low-resolution serial blockface SEM (SBFSEM) 3View acquisition with 2 nm and 8 nm 
pixel resolutions. In the 2 nm pixel size image stack, high contrast enabled by relatively higher electron doses 
ensured high resolution and high SNR, which unfortunately at the same time caused severe sample damage, 
resulting in a failure to serially section the tissue after imaging the blockface. On the other hand, low resolution 
acquisition at 8 nm pixel size facilitated serial blockface imaging, but the compromised resolution and SNR 
made it impossible to uncover finer structures in the sample. 
 
Supplementary Movie 2.  
Image restoration achieved by a tSEM-trained PSSR model enables higher resolution SBFSEM imaging. 
Shown are the lower resolution SBFSEM acquisition input (left) and the PSSR output (right). 
 
Supplementary Movie 3. 
Resolution restoration achieved by tSEM-trained PSSR model enables higher resolution FIB-SEM acquisition. 
Shown are the lower resolution FIB-SEM acquisition input (left) and the PSSR output (right). 
 
Supplementary Movie 4. 
PSSR facilitates efficient 3D segmentation and reconstruction. Shown is the rendering of the 3D reconstruction 
of multiple biological structures using the PSSR processed FIB-SEM stack shown in Fig. 2 and Supplementary 
Movie 3. Specifically, this reconstruction includes mitochondria (purple), endoplasmic reticulum (yellow), 
presynaptic vesicles (gray), the postsynaptic neuron’s plasma membrane (blue), the postsynaptic density (red) 
and the presynaptic neuron’s plasma membrane (green). Segmentation was implemented in Reconstruct35. 
Mesh was generated with CellBlender36,37. Overlay of the image stack was done using Neuromorph38. The 
animation was made using Blender39. 
 
Supplementary Movie 5. 
Photobleaching and cell stress due to high laser dose during high-resolution live cell imaging. Shown is a 10-
minute high-resolution time-lapse movie of a U2OS cell stained with Mitotracker Red imaged with an Airyscan 
microscope. The live-cell acquisition suffered from photobleaching and phototoxicity as reflected by the 
steadily decreasing fluorescence intensity over time as well as the swelling and fragmenting mitochondria. 
Imaging condition: 35 µW laser power, 2 s frame rate, 1.15 µm pixel size. 
 
Supplementary Movie 6. 
PSSR restores resolution and SNR to Airyscan equivalent quality with no bleaching and higher imaging speed. 
Shown are PSSR restoration output (right, ~49 nm pixels) and its comparison to low resolution acquisition 
input (left, ~196 nm pixels). The digitally magnified region highlights a mitochondrial fission event much more 
easily detected in the PSSR output. 
 
Supplementary Movie 7. 
Comparison of high resolution Airyscan and low resolution confocal time-lapse acquisition of neuronal 
mitochondria. Corresponding kymographs are also displayed to illustrate the difference in temporal resolution. 
The Airyscan acquisition has higher spatial resolution but lower temporal resolution due to lower imaging 
speed, while confocal acquisition gives higher temporal resolution but lower spatial resolution. 
 
Supplementary Movie 8. 
Comparison of PSSR (right) versus bilinear interpolation (left). The enlarged region highlights two adjacent 
mitochondria passing one another in an axon, the process of which was only resolved in PSSR. Line plot 
shows the normalized fluorescence intensity of the indicated cross-section. 
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Supplementary Tables 
 
Supplementary Table 1: Details of fluorescence PSSR training experiments. 

  

Experiment 
U2OS MitoTracker 

PSSR-SF 
U2OS MitoTracker 

PSSR-MF 
Neuron Mito-dsRed 

PSSR-MF 
Input size (x, y, z) (128, 128, 1) (128, 128, 5) (128, 128, 5) 
Output size (x, y, z) (512, 512, 1) (512, 512, 1) (512, 512, 1) 
No. of image pairs for training 5000 5000 3000 
No. of image pairs for validation 200 200 300 
No. of GPUs 2 2 2 
Training datasource size (GB) 9.4 9.4 9.5 
Validation datasource size (GB) 0.44 0.44 1.8 
Training dataset size (GB) 1.38 1.7 1.03 
Validation dataset size (GB) 0.06 0.07 0.1 
Batch size per GPU 8 8 6 
No. of epochs 100 100 50 
Training time (h) 3.76 3.77 1.25 
Learning rate 4e-4 4e-4 4e-4 
Best model found at epoch 33 86 39 
Normalized to ImageNet statistics? No No No 
ResNet size ResNet34 ResNet34 ResNet34 
Loss function MSE MSE MSE 
 
 
 
Supplementary Table 2: Details of fluorescence PSSR testing data for PSNR, SSIM, and error-mapping. 
 

  

U2OS MitoTracker Neuron Mito-dsRed 
Semi-synthetic Real-world Semi-synthetic Real-world 
HR LR HR HR LR HR 

Microscopy Airyscan Confocal Airyscan Airyscan Confocal Airyscan 
Laser power (µW) 35 7 28 82 11 55 
Data source size (MB) 1250 7.15 200 5920 10.7 305 
Data set size (MB) 325 6.39 191 1970 10.4 305 
Total number of different cells 6 10 10 7 10 10 
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Supplementary Table 3: Details of the EM PSSR training experiment. 
 

EM training data 

Round of progressive resizing 1 2 3 

Input size (x, y, z) (32, 32, 3) (64, 64, 3) (128, 128, 3) 

Output size (x, y, z) (128,128,3) (256, 256, 3) (512, 512, 3) 

Batch size per GPU 64 16 8 

No. of epochs [N1, N2] [1,1] [3,3] [3,3] 

Learning rate [lr1, lr2] [1e-3, (1e-5,1e-3)] [1e-3, (1e-5,1e-3)] [1e-3, (1e-5,1e-4)] 
Training dataset size (GB) 3.9 15.56 62.24 

Validation dataset size (GB) 0.96 3.89 15.56 

Training datasource size (GB) 105 

Validation datasource size (GB) 26 

No. of image pairs for training 80,000 

No. of image pairs for validation 20,000 

Total training time (h) 16 

Normalized to ImageNet statistics? Yes 
ResNet size ResNet34 

Loss function MSE 

No. of GPUs 2 
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