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Abstract

Transmission-mode scanning electron microscopy (tSEM) on a field emission SEM platform was developed for efficient and
cost-effective imaging of circuit-scale volumes from brain at nanoscale resolution. Image area was maximized while
optimizing the resolution and dynamic range necessary for discriminating key subcellular structures, such as small axonal,
dendritic and glial processes, synapses, smooth endoplasmic reticulum, vesicles, microtubules, polyribosomes, and
endosomes which are critical for neuronal function. Individual image fields from the tSEM system were up to 4,295 mm2

(65.54 mm per side) at 2 nm pixel size, contrasting with image fields from a modern transmission electron microscope (TEM)
system, which were only 66.59 mm2 (8.160 mm per side) at the same pixel size. The tSEM produced outstanding images and
had reduced distortion and drift relative to TEM. Automated stage and scan control in tSEM easily provided unattended
serial section imaging and montaging. Lens and scan properties on both TEM and SEM platforms revealed no significant
nonlinear distortions within a central field of ,100 mm2 and produced near-perfect image registration across serial sections
using the computational elastic alignment tool in Fiji/TrakEM2 software, and reliable geometric measurements from
RECONSTRUCTTM or Fiji/TrakEM2 software. Axial resolution limits the analysis of small structures contained within a section
(,45 nm). Since this new tSEM is non-destructive, objects within a section can be explored at finer axial resolution in TEM
tomography with current methods. Future development of tSEM tomography promises thinner axial resolution producing
nearly isotropic voxels and should provide within-section analyses of structures without changing platforms. Brain was the
test system given our interest in synaptic connectivity and plasticity; however, the new tSEM system is readily applicable to
other biological systems.
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Introduction

Serial thin sections of ,100 nm thickness have been used to

visualize and reconstruct cellular and subcellular structures in the

three-dimensional (3D) context from a wide variety of biological

systems. Examples include, but are not limited to, Gram-negative

bacteria [1], yeast [2], algae [3], nematode [4], lobster [5], frog

[6], mouse [7], rat [8–10], and human cells [11]. In the central

nervous system, serial section (ss) EM provides sufficient resolution

to reveal cellular and subcellular structures within the three

dimensional context of the surrounding neuropil, including

dendrites, axons, and astroglial processes. In the last decade,

ssEM has become widely recognized as a crucial tool to map and

understand synaptic circuitry in the brain [12–16].

Our laboratory and others have used ssEM to understand how

the structure of synapses and neuropil is modified by experience

and in models of learning and memory [17–19] or under

pathological conditions [20–26]. The results from these studies

have provided fundamental insights into the anatomical substrates

for changes in information processing and behavioral output. Both

normal and pathological changes in neuronal morphology can

involve subcellular structures such as, polyribosomes, microtu-

bules, endosomes, dense core vesicles, and smooth endoplasmic

reticulum, that require ssEM at nanoscale lateral resolution

(,2 nm per pixel in x–y) to be reliably identifiable. Although

microtubules and other small organelles have been detected at

lower image resolutions using other ssEM techniques (e.g.,

[27,28]), our experience is that reliable identification and

quantification becomes difficult at lower resolutions [17,19,29,30].

The ssEM approach with biological tissue has been implemen-

ted using transmission EM (TEM) on heavily en bloc and post-

section stained specimens, because TEM affords the high lateral

resolution required for the analysis of nanoscale subcellular

structures. The tissue volume is generated by stacking and aligning

the images of single or montaged fields across hundreds of serial

ultrathin (,45–70 nm) sections of plastic-embedded tissue on

electron-transparent support films spanning slot grids [31].

However, TEM imaging suffers from a relatively small individual

field size (,100 mm2, or 10 mm per side), and therefore requires

montaging with substantial data redundancy and electron dosage
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to achieve large image volumes. Manual exchange of specimen

grids also adds to the cumbersome nature of TEM imaging for

large scale analyses even with automated montaging [15,32,33].

Renewed interest in ssEM as a high-resolution 3D tool for

neuroscience has led to improvements over the last decade in this

otherwise time-, skill-, and labor-intensive approach [34,35].

Recent studies [16,18] have benefitted from newly developed

methods based on an SEM platform using backscatter imaging

from a tissue block surface that is successively removed by the

diamond knife (serial block-face SEM, or SBFSEM; [36]) or

a focused ion beam (FIB-SEM; [37,38]). Unfortunately, these

approaches may not yield the level of lateral resolution or contrast

necessary for unequivocal identification of the nanoscale sub-

cellular structures as discussed above. Furthermore, these

approaches are destructive, so that sections cannot be retrieved

for subsequent viewing at higher resolution.

We sought to improve ssEM by increasing the size of single

image fields, while maintaining the needed lateral resolution and

image quality, and reducing operator time and instrument cost.

These goals were achieved by imaging serial ultrathin sections with

a transmitted electron detector mounted on a field-emission (FE)

SEM [39], that we call ‘‘transmission-mode SEM’’ or ‘‘tSEM’’ to

differentiate from scanning transmission EM based on a TEM

platform commonly referred to as ‘‘STEM’’ [40]. Transmission

imaging in a SEM platform (sometimes referred to as ‘‘STEM-in-

SEM’’) has long been in use [41], but image resolution was

unsatisfactory when compared to TEM and large frame storage at

high resolution was not possible. Recently, field emission sources

have become more commonly available for SEM instruments,

contributing to an increase in beam brightness and image

resolution [41]. The use of ‘‘STEM-in-SEM’’ imaging was

previously proposed for polymer characterization as a more

practical and affordable alternative to TEM imaging (e.g., [42]),

although this prior approach lacked the large frame image

acquisition. Our tSEM system has robust automated control of

the specimen stage translation and electron beam scan dimension

and rotation over large areas. The tSEM method is capable of

acquiring single-frame images that can be more than 60 times

larger than those taken with a TEM, while easily achieving the

required 2 nm pixel size. In addition, tSEM imaging induces far

less specimen drift and charging than the TEM, resulting in less

physical distortion of the sections. Furthermore, the cost of this

new system is substantially less than that of modern TEM or SEM-

based ssEM systems (i.e., SBFSEM and FIB-SEM). We compare

image quality between the new tSEM system and our modern

TEM to analyze synapses and subcellular components as a basis

for understanding synaptic connectivity and plasticity in the

complex neuropil of the brain. The results show outstanding

images that can be readily aligned using a new automated elastic

alignment tool in TrakEM2 [43].

Materials and Methods

Tissue Sample Preparation
All animal procedures were performed in accordance with the

Guide for the Care and Use of Laboratory Animals of the National

Institutes of Health. The animal protocols were approved by

Institutional Animal Care and Use Committee of The University

of Texas at Austin (protocol numbers: 06062801 and AUP-2010-

00181) and the Otago University Animal Ethics Committee

(protocol number: 115/09). Hippocampal dentate gyrus tissue was

obtained from adult rats that were rapidly perfusion-fixed with 2%

formaldehyde and 2.5% glutaraldehyde (both aldehydes from

Ladd Research, Williston, VT) in 0.1 M cacodylate buffer

(pH = 7.35–7.4) under halothane anesthesia and tracheal supply

of oxygen. Hippocampal area CA1 tissue was obtained from an

acute brain slice (350 mm thickness) prepared from a rat under

isoflurane anesthesia. The acute slice was recovered in oxygenated

artificial cerebrospinal fluid for 3 hr before being fixed with 2.5%

formaldehyde and 6% glutaraldehyde in 0.1 M cacodylate buffer

(pH = 7.4) in a microwave oven [44]. The fixed tissue was then cut

into slices (70 mm thickness) with a vibrating blade microtome

(Leica Microsystems, Buffalo Grove, IL) and processed for electron

microscopy as described previously [31,45]. Briefly, the tissue was

treated with reduced osmium (1% osmium tetroxide and 1.5%

potassium ferrocyanide in 0.1 M cacodylate buffer), followed by

microwave-assisted incubation in 1% osmium tetroxide under

vacuum. Then the tissue underwent microwave-assisted dehydra-

tion and en bloc staining with uranyl acetate in ascending

concentrations of ethanol. The tissue was embedded into LX-

112 epoxy resin (Ladd Research) at 60uC for 48 hr before being

cut into series of ultrathin sections at the nominal thickness of

45 nm with a 35u diamond knife (DiATOME, Biel, Switzerland)

on an ultramicrotome (Leica Microsystems). The thickness of

45 nm was chosen to minimize overlap among small organelles

within individual ultrathin sections (e.g. small synaptic vesicles are

,30 nm in diameter). The serial ultrathin sections were collected

onto SynaptekH Be-Cu slot grids (Electron Microscopy Sciences,

Hatfield, PA, or Ted Pella, Redding, CA) coated with Pioloform F

(Ted Pella), and stained with a saturated aqueous solution of

uranyl acetate followed by lead citrate [46]. The SynapTek grids

are thicker and more durable than TEM grids made only of Cu,

and thus much less prone to damage even after handling multiple

times. These specimens imaged at 28 kV, a relatively high

accelerating voltage for SEM, displayed no charging and hence

required no carbon coating or low vacuum operation. A typical

series for our experiments consists of at least 200 serial sections

collected on about 12 grids.

Serial Section EM Imaging
The serial ultrathin sections were imaged with either a JEOL

JEM-1400 TEM (Tokyo, Japan) or a Zeiss SUPRAH 40 field-

emission (FE) SEM (Oberkochen, Germany). The TEM is

equipped with a charge coupled device (CCD) camera with the

field size of 4,08064,080 (or 16.656106) pixels (Gatan UltraScan

4000; Pleasanton, CA), controlled by DigitalMicrograph software

(Gatan). For TEM, the slot grids containing serial ultrathin

sections were loaded into grid cassettes that were individually

loaded into a Gatan 650 CC specimen holder that allow the grid

to be rotated inside the chamber. The holder accommodates one

grid at a time, and requires manual exchange between grids. At

6,0006magnification at 2 nm pixel size with the accelerating

voltage of 120 kV, serial section images were manually acquired as

the Gatan proprietary.dm3 files, which were later batch converted

into 8-bit JPEG files with DigitalMicrograph software. Conversion

into JPEG was originally done to save space in our database. No

practical differences in identification of key structures were found

compared to the same.dm3 images converted into TIFF format.

The FE-SEM is equipped with a retractable multi-mode

transmitted electron detector (‘‘T’’ in Fig. 1A) and the integrated

module called ATLASTM (AuTomated Large Area Scanning;

software version 3.5.2.385), which is a package of hardware and

software designed to control scan generation, stage translation,

and serial acquisition of large-field images (Fig. 1A). Multiple

TEM grids containing serial sections were loaded into a single

specimen holder (Fig. 1B, C). The ‘‘Zeiss Multi-Mode’’ trans-

mitted electron detector is composed of the center aperture and

four quadrants (Fig. 1D); for tSEM imaging, the imaging mode

Transmission-Mode Scanning Electron Microscopy
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was set to ‘normal’ (for bright field detection behind the central

aperture) and ‘inverted’ (for dark field), respectively. For serial

tSEM imaging, the center of the region of interest was marked

manually on each section throughout the entire series using the

ATLAS system (Fig. 1E); for 200 serial sections this process took

less than a half day. Then the ATLAS system automatically

translated the stage, rotated the scan field if necessary, and

acquired single-frame serial images (section-to-section and grid-to-

grid) of up to 32,768632,768 (or 1.076109) pixels with the

transmitted electron detector at the pixel size of 2 nm (i.e., scan

area = 4,295 mm2). The scan beam with a high brightness

generated by the field-emission source is a critical component in

achieving the level of lateral resolution demonstrated by this tSEM

system. Pixel size can be adjusted depending on the operator’s

needs; however, the limits on image resolution (i.e., the smallest

distance between two points that can be visualized) was about

1.5 nm based on our experience with this system. The scan beam

was set for a dwell time of ,1.3 ms, with the accelerating voltage of

28 kV in high-current mode. Focus and brightness were also

adjusted automatically with ATLAS. The acquired serial images

were saved as 8-bit TIFF files, although as noted in the Results,

16-bit TIFF files retained image quality in the brightened area

where focus was obtained from multiple scans (Fig. 1F).

If the size of each image field needs to be extended beyond

32,768632,768 pixels, the operator can set up mosaics by

specifying the target dimensions of the image field and the

amount of overlap between image tiles. ATLAS then automati-

cally determines the number of image tiles per field, based on the

pixel size and the size of each image tile. For example, an image

field of 360 mm wide660 mm tall can be set up as a 661 mosaic of

image tiles measuring 32,768632,768 pixels each at 2 nm pixel

size (Fig. 1E). The operator is required to mark only the center of

mosaic field (* in Fig. 1E), versus (# in Fig. 1E) in the single-frame

images. The ATLAS system can also be used to acquire large

frame images with secondary detectors (on our system; Fig. 1A) or

backscatter detectors (not on our system). On occasions where we

needed lower magnification views of the overall grid or section

(e.g., Fig. 1E), the specimens were imaged with secondary electron

detectors mounted on the side of the chamber or inside the final

lens (see Fig. 1A).

Serial EM images were aligned automatically using Fiji with the

TrakEM2 plugin (http://fiji.sc, http://www.ini.uzh.ch/

ãcardona/trakem2.html) [43,47,48]. The images were aligned

rigidly first, followed by application of affine and then elastic

alignment. TrakEM2 was also used to generate single images from

mosaics of image tiles. The aligned series was then imported into

RECONSTRUCTTM software (http://synapses.clm.utexas.edu/)

[49] to compare images acquired by the two EM platforms.

For preparation of figure plates, brightness and contrast of EM

images were adjusted with either Fiji or Adobe Photoshop CS4

Extended (San Jose, CA). The original image pixels were retained

unless otherwise noted in figure captions. Images from distortion

analysis (see below) were generated in Matlab (version R2011b;

MathWorks, Natick, MA). Final figure plates were prepared with

Adobe Illustrator CS4.

Image Distortion Analysis
We had hoped to use a carbon replica grating to compare high-

order distortions in the TEM and tSEM; however, the tSEM scan

field is much larger than the individual grid support window,

within which the grating replica also revealed large scale wrinkles

(Fig. 2A). Instead, we imaged an unused integrated circuit (IC)

chip, which has a regular pattern and is etched onto a very stiff

substrate and is therefore very flat. The substrate is electron

opaque, which makes the IC ineligible for use in calibrating the

TEM. In the tSEM, we may image it under the same conditions

that we might use for transmission imaging, with the exception

that we use a secondary electron detector (Fig. 2B). We wrote

software in Matlab to measure the high-order geometric distortion

due to imaging with an electron microscope (available from:

https://github.com/larrylindsey/MatlabCode/tags). Unfortu-

nately, we have no prior knowledge to guide our expectation of

how the sample should appear. Visual inspection tells us that the

pattern consists of squares that are regular over a parallelogram

with an inner angle of approximately 60u (Fig. 2C). To estimate

the imaging distortion, we found the imaged locations of the units

of this pattern and compared them to their expected locations. A

match kernel representing a single unit was selected manually from

the image and used for normalized cross-correlation with the

original image, resulting in a map in which local maxima represent

the precise image locations of these repeated units (Fig. 2D). To

extract the maxima, we perform a simple threshold (Fig. 2E).

Thresholding is advantageous in that it is simple to implement, but

may occasionally result in spurious detections. We correct for these

and extract our model for the expected pattern at the same time

using RANSAC (RANdom SAmple Consensus) [50].

For each detected location xi (Fig. 2E), we find the nearest

neighbor, xi,r (Fig. 2F). We form a triplet by finding the point xi,l
at as close to the expected angle and distance from xi,r about xi as

possible. In the case of a rectangular pattern, this angle would be

90u, but in our case this is +60u or 2120u (Fig. 2G). Without loss of

generality, we may orient the triplet [xi,l, xi, xi,r] such that xi,l is

offset in approximately the same direction (positively or negatively)

from xi for each i, and similarly for xi,r (Fig. 2H). Now, the

average sign corrected vectors gi,r = xi,r 2 xi and gi,l = xi,l 2 xi
yield a potential model for the regular pattern that we refine using

RANSAC.

For a given population, the RANSAC algorithm attempts to

find the largest subpopulation that fits a given model as follows:

first, a random sample of the original population is taken and

a model is fit to it. Each remaining member of the original

population is tentatively added to this consensus sample. If it fits

the model to a given certainty, it is kept. The model that yields the

largest consensus sample is said to be the correct one, and is said to

fit its corresponding sample population. In our case, a sample is

taken from the set of right and left offset vectors, gi,r and gi,l,
corresponding to a single point, xi, taken at random. To calculate

the certainty for any point xj, we find the neighbor closest to one of

its four expected neighbor-locations given an exact fit to the

model, xj 6 gi,r and xj 6 gi,l. The uncertainty is the distance

between this neighbor and its expected location. The final model,

consisting of gr and gl, is taken as the mean offset vector pair over

the consensus set. Now, if we impose an exactly regular pattern on

the sample, we would find the unit located at the nth column and

mth row at an offset of mgr+ngl from the origin, where m and n are

integers.

We select a detected location xi to assign to row 0 and column

0. Any location is as good as any other, so we may arbitrarily select

x0. This location’s neighbors are traversed and assigned to the

appropriate column and row, and in turn the neighbors of those

locations are traversed, and so on until each location has a row

and column associated with it that is consistent with all of its

neighbors. For example, the neighbor located at x0+ gr would be

assigned to column 1, row 0, and x0 - gl, if it exists, would be at

column 0, row 21. Let the cr,i and cl,i represent the column and

row coordinates for location xi respectively, then the expected

‘‘real’’ location for xi is yi = x0+ cr,I gr+cl,I gl. Now we have a set

{xi} of measured locations and a set {yi} of expected locations.

Transmission-Mode Scanning Electron Microscopy
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Figure 1. tSEM instrumentation. A: Zeiss SUPRA 40 field emission scanning electron microscope equipped with a secondary electron detector (S),
an in-lens detector (I), and a retractable detector for transmitted electrons (tSEM detector; T). The column (G) contains the gun assembly and
objective lenses. The specimen chamber door (C) slides open outward with the stage. The SEM is controlled through the SEM interface and console of
keyboard, mouse, joysticks, or the integrated ATLAS system for large-field imaging. The SEM can also be fitted with a backscatter electron detector
(not shown). B: Top view of the specimen holder magnified to show two of the grid holding positions (10 and 11). Position 10 is empty and the
copper clip is disengaged to the left of the slot, while position 11 contains a TEM grid (3 mm diameter) with the clip engaged. C: TV camera view of
the specimen chamber showing the arrangement of the final lens (L), tSEM detector (T), and sample holder (H) on the stage. Working distance is 4–

Transmission-Mode Scanning Electron Microscopy

PLOS ONE | www.plosone.org 4 March 2013 | Volume 8 | Issue 3 | e59573



The overall distortion may be modeled as a function T: yi R xi.
Although it is not possible to know how accurate our idealized

model is with respect to ‘‘shear’’ and ‘‘stretch,’’ we can ignore this

affine distortion because standard registration techniques are

invariant to it. Let {y’i} be the result of affine alignment of {yi} to

{xi}, then we take T: y’i R xi to be the nonlinear distortion model

for the tSEM.

Results

tSEM Image Quality is Comparable to TEM Images
The new tSEM system accommodates specimens prepared in

the same manner as for TEM. Compared to TEM, we observed

qualitatively that the tSEM imaging was less prone to drift and

shrinkage. The autofocus routine in tSEM repeatedly scans a small

area in the center of the imaging field, which leads to greater

brightening of the focus area compared to the rest of scan area

(Fig. 1F). This brightening, however, does not cause loss of

content; adjusting the brightness to the autofocus scan area and

imaging in 16-bit mode retained the greyscale for later analysis of

ultrastructure in this repeatedly scanned area (Fig. 1F2). Figure 3

demonstrates the tSEM image quality is comparable to TEM, and

is excellent for identification, 3D reconstruction, and analysis of

subcellular structures.

Scan and Lens Distortions were Negligible in the tSEM
System

Image distortions can affect calibration of pixel size and section

thickness, which are critical steps in quantitative 3D analysis of

tissue volumes. Pixel size was calibrated based on a grating replica

image (Fig. 2A inset) that was imaged along with the serial section

series. Section thickness is estimated with the cylindrical

mitochondria method, which uses the ratio of the maximum

diameter of longitudinally sectioned mitochondria (or other

cylindrical objects) to the number of serial sections they span

[51]. For our typical series acquired on either tSEM or TEM, the

voxel size obtained through these methods is about

2 nm62 nm645 nm (x6y6z). This calibration is applied to the

entire tissue volume for three-dimensional quantitative analysis of

reconstructed neuropil and synapse structures (e.g., counting,

lengths, area, volume, z-distances) that are sampled based on well-

defined sets of structural criteria (see Discussion).

Scan distortion was estimated using a bivariate polynomial

model, created as described in the methods section. We calculated

the transformed location for each pixel in the original image and

measured the distance to its original location, after affine

alignment. The root-mean-square (rms) of the distance measure-

ments for the full 24,000624,000 pixel field was found to be 9.68

pixels (Fig. 4A). This reduces drastically when the field is cropped

to be similar to that obtained in the TEM. Over a 4,09664,096

pixel field, we measured an rms distortion magnitude of only 0.19

pixels, which is negligible (Fig. 4B).

Size of Single Image Fields in tSEM are much Greater
than in TEM Cameras at the Same Pixel Size

The bottom mount CCD camera on our TEM obtains an

image field of 4,08064,080 pixels (i.e. ,67 mm2 at 2 nm/pixel,

obtained at 6,000 magnification), which is among the largest

currently available. The conventional interface on a FE-SEM only

obtains image fields of about 3,00062,000 pixels (i.e. ,28 mm2 at

2 nm/pixel); however, when integrated with the ATLAS system,

the single tSEM image field can be at least 32,768632,768 pixels

(i.e. 4,295 mm2 at 2 nm/pixel). Thus, the tSEM readily images an

area more than 60 times greater than the TEM (Fig. 5). The tSEM

system with its large chamber and precise scan and stage control

was used to automate acquisition of serial section images from

these much larger field areas.

The imaging field size of the tSEM can be extended further by

automated montaging through the ATLAS system (Figs. 1E and

6A). The montaging process in tSEM, by virtue of the larger field

size, greatly reduces the total number of smaller images required

and; hence, the total amount of edge-overlap than would be

needed to produce a comparable montage area in TEM. It is

possible now to take advantage of these automated acquisition and

montaging capabilities in tSEM to photograph the entire face of

much larger serial sections each ,500 mm wide6.100 mm high

(Figs. 1E and 6A), increased from ,100 mm wide630 mm high

used in our previous studies [31]. The much larger tSEM field

sizes can be used to automatically photograph and montage tissue

volumes comparable to a typical confocal image volume (Fig. 6B),

with much greater resolution to identify and measure synapses and

other key subcellular structures (Fig. 3).

Reduced Operator Involvement for Image Acquisition
with tSEM Compared to TEM (Table 1)

In both TEM and tSEM, the total z-dimension of the imaged

tissue volume is limited by the number of serial ultrathin sections

obtained, which increases with operator skill. Collection of 200

serial sections is routine, and 1000 serial sections is possible for

skilled operators, and about one day is required to prepare, cut

and collect 200–1000 serial sections. For TEM, a single field image

can be acquired rapidly (,1 sec); however, there are many

manual steps that multiply the operator time substantially and

image acquisition across 200 serial sections requires several

attended working days. First, the operator must insert one or

a few specimen grids at a time in the TEM, and then find, align

and stabilize the field of interest before acquiring each image.

5 mm between the final lens and the specimen, and 4–5 mm between the specimen and the detector. Chamber vacuum is maintained at ,1027 Pa
during imaging. D: Low-magnification tSEM image of an entire slot grid containing serial sections. Below the sections, the aperture of the tSEM
detector can be seen (circle with dotted line), which must to be aligned to the center of the image field. Four quadrants (Q) of the detector element
are also used for imaging by collecting electrons scattered at higher angles. Imaging mode (normal or inverted) can be set for each detector element
on the SEM interface. E: SEM secondary electron image of another set of serial sections (different from that shown in D). Each section measures about
510 mm width671 mm height. This image was taken after acquisition of two image series, one consisting of single frame images (32 mm632 mm
surrounding the #) and the other consisting of mosaic images (6 columns61 row; 360 mm width664 mm height, surrounding the *). These image
fields are seen as brightened areas on each section (outlined by dotted and black boxes in the bottom section). Regardless of the target image size
(single or mosaic field), the operator is required to mark only the center of each field (indicated by ‘‘#’’ or ‘‘*’’,) to set up the serial image acquisition.
The area outlined by a red box (‘‘F’’) is further magnified in F1–2. F1–2: Magnified view of a subfield measuring 10.8 mm63.6 mm around the center of
the image tile indicated in E. The brightened area in the center is where repeated scans took place during the autofocus routine. If the image
brightness is adjusted to the entire field, the autofocus area becomes too bright to discern ultrastructure within this area (F1). As demonstrated in F2,
however, these repeated scans during the autofocus routine do not cause loss of the underlying tissue structure. The original tSEM image was
acquired as a 16-bit TIFF file at 2 nm pixel size. The image brightness was optimized for either the entire image field or the autofocus area to generate
the images in F1 and F2. These images were then converted to 8-bit TIFF files and down-sampled to 12 nm pixel size for the final figure.
doi:10.1371/journal.pone.0059573.g001
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Figure 2. Distortion analysis method. A: SEM secondary electron image of TEM calibration standard (crossed diffraction grating replica) on a 300-
mesh grid. The grid is tilted at 20u shows a wrinkled surface (tilt axis = upper left to lower right, with some scan tilt correction applied). Image field is
about 56 mm per side, as in figure A. Inset: Details of the grating replica. Note that each square measures 0.463 mm60.463 mm. This tSEM image was
taken without any tilt. B: SEM secondary electron image of an integrated circuit (IC) chip used for evaluation of SEM scan distortion. The chip is tilted
at 65u (tilt axis = left to right, dynamically focused, no scan tilt correction applied) to illustrate flatness. Image field is about 56 mm per side, which is
approximately the same size as tSEM images. Inset: Details of the IC chip. Note that each square-shaped element measures 2 mm62 mm, and is
arranged in hexagonal arrays. This SEM secondary electron image was taken without any tilt. C: SEM secondary electron image of IC chip as in A,
cropped to correspond with illustrations in D–H. D: Energy map created from the normalized cross-correlation of an image of an individual IC unit
with the original image. E: The energy map is thresholded and peaks selected from within the resulting connected components. For each peak, as
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Alignment during image acquisition is critical for the small TEM

field sizes because even a slight shift in positioning from section to

section, caused by drift or operator error, can substantially reduce

the region of interest collected on adjacent sections, and hence the

tissue volume available for subsequent 3D analysis. Thus, the

operator time for manual serial image acquisition in TEM is

proportional to the total number of images required to generate

the volume of interest. Some systems have been developed to

automate the grid loading (e.g., [52] and Gatan Select 100TM), but

at present they still require a lot of operator attention. Even though

automated TEM montaging (e.g., [15,32]) has helped to reduce

operator time, the process of montaging has its own issues

including: (1) montaging many small field images produces

substantial data redundancy and requires significant computing

time; (2) electron dosage is not evenly distributed during

montaging and hence can result in non-uniform distortion,

requiring further post-image processing to correct the distortions,

and (3) manual exchange of specimen grids can add substantial

operator time for TEM montaging across serial sections. The new

tSEM overcomes these cumbersome features of montaging in

TEM.

In addition, the grid exchanges are minimized in the new tSEM

system because the current specimen holder accommodates up to

12 grids at a time (easily 200 serial sections) and there is certainly

room for a larger holder in the chamber. The attended operation

involves simply locating, adjusting scan rotation, and marking the

center of the imaging field on each serial section, which takes

several hours (not days) for 200 serial sections. The rest of the

image acquisition process is automated for image focus and

brightness optimization, acquisition, and stage translation from

one field to the next. Since the fields are so large, slight shifts in

positioning of the center mark do not dramatically affect the tissue

volume available for subsequent 3D analysis. Furthermore,

operator time remains constant even when montaging to enlarge

the field because only the center of the entire field need be marked

per section to guide the automated acquisition (Fig. 1E).

Image Artifacts are Balanced by Increased Image Area
and Automated Elastic Alignment

Because tSEM uses serial ultrathin sections to achieve the

desired axial resolution, the same limitations of TEM apply

regarding handling of fragile serial section ribbons and grids [31].

A long ribbon of serial sections must be broken into shorter

segments to fit them within the slot of a TEM grid. Sections must

be supported on low-structure, electron transparent support film,

such as Pioloform. Depending on the quality of the knife and skill

of the operator, cutting forces can produce compression or knife

marks and tears, settling of the sections on the film can produce

folds, and sections can be lost, especially during ribbon breakup.

These artifacts can interfere with accurate local alignment, making

3D reconstructions challenging or even impossible. Hence, in the

past with a TEM, sections were first viewed through the entire

series to find small regions where the fields could be imaged across

serial sections while minimizing encounters with artifacts. The

larger tSEM imaging field makes it harder to avoid these potential

artifacts. The new elastic alignment tool in TrakEM2 [43] is much

less sensitive to the section artifacts than prior alignment strategies,

and provides accurate alignment across sections that would

otherwise be distorted (Movie S1). Thus, the combination of

automated image acquisition, afforded by the tSEM, and the

enhanced elastic alignment tool, quickly provides much larger

volumes for quantitative ultrastructural analysis.

The tSEM System Images More, yet is Simpler, Smaller
and More Affordable than the TEM

Table 1 further summarizes the main characteristics of TEM

and tSEM. The tSEM is similar to TEM in the methods used to

process the tissue and maintains the minimum nanoscale

resolution needed to recognize and measure subcellular elements

of the neuropil. The tSEM instrument is simpler and smaller

compared to the TEM, at least partly because it does not require

an image-forming lens below the specimen and the vacuum

requirement for tSEM at 28 kV is less stringent than for the TEM

operating at 120 kV. Thus, the tSEM occupies a smaller floor

space that readily fits in a standard laboratory. Fully outfitted, the

tSEM system price is about half the cost of a TEM with a large-

format CCD camera, making tSEM more affordable for new and

established investigators.

Discussion

The new tSEM offers a cost-effective and labor-reducing

approach to high-throughput ultrastructural imaging of biological

specimens. It provides a high degree of automation that markedly

reduces operator time during image acquisition while greatly

increasing the size of the image fields and volumes without

compromising image quality. The tissue volumes one can image

with tSEM are comparable to those obtained through light

microscopy, such as two-photon imaging, thereby providing a new

and efficient platform to link live-imaging with ultrastructural

analysis of underlying subcellular processes.

The tSEM system described here adds to a list of several new

ssEM methods that have been developed recently to obtain dense

volume reconstructions of brain neuropil in order to understand

neural circuitry at the level of synaptic connections [15,27,28,36–

38,]. Each of these new ssEM approaches has advantages and

disadvantages relative to ssTEM. Some of the advantages include

larger image field size, finer axial resolution, reduced section loss,

reduced physical and optical distortion, and automation of serial

sectioning, imaging, alignment, and segmentation (for more

comprehensive comparisons, see [36,53]).

The use of non-destructive physical sectioning of the tissue for

tSEM imaging has several advantages over the other SEM

methods including: (1) The specimens can be archived for

repeated tSEM imaging with larger field sizes or at higher

resolutions. (2) The specimen can be used for high resolution post-

embedding immunolabeling studies (fluorescent or gold) to localize

molecules of interest in 3D (e.g., [22]). (3) The same specimen can

be imaged with increased axial resolution by EM tomography to

examine convoluted organelles buried within the thickness of

a single ultrathin section, such as macromolecular complexes

found, for example, in the presynaptic active zone (e.g., [54]). (4)

Transmission imaging through ultrathin sections achieves greater

lateral resolution compared to the backscatter imaging methods

discussed below. (5) Sections are amenable to post-section staining

shown encircled in green, we build a triplet model to use for rejecting false detections and for extracting the true regular pattern. F: The detected
location is paired with its nearest neighbor to form a line segment. G: We form putative neighbor locations at expected angles above and below the
line segment (+60u and 2120u, respectively). H: Here, the distance to the detection closest to the upper putative neighbor was smaller than for the
lower one. The upper neighbor is selected to complete the triplet.
doi:10.1371/journal.pone.0059573.g002
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Figure 3. Quality comparison of images acquired on tSEM vs. TEM. Serial section images from the middle molecular layer of the
hippocampal dentate gyrus acquired on a TEM (A1–3) and tSEM (B1–3). They were taken as 8-bit grayscale images, and the brightness and contrast
were then adjusted to match the images from the two different EM platforms. A1–3: An obliquely cut dendrite (den1) gives rise to a mushroom-
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for increased contrast. (6) Good ultramicrotomes are reasonably

priced and commonly available.

The main disadvantage of the tSEM approach is that it still

involves collection of ultrathin sections requiring substantial

operator skill. Difficulties of serial ultrathin sectioning include:

(1) Generating a long continuous ribbon of serial ultrathin sections

with uniform thickness. (2) Dividing the ribbon into shorter

segments that fit on the slot grids. (3) Avoiding breakage or folds in

the fragile electron transparent substrates used to fill the slot and

support the sections. (4) Reducing compression due to contact with

the diamond knife. (5) Achieving uniform section thickness and

avoiding contamination from local environment or poor prepara-

tion of post-section heavy metal stains. We have published

numerous methods to avoid or minimize these potential flaws in

serial ultrathin sections [31,45]. Ultrathin sections supported on

film materials such as polyimide and silicon nitride (e.g., [55]) that

are more rigid and/or stable might reduce folds, and decrease

further the fragility of the support. Such materials may also allow

for larger specimen windows, reducing the need to break up

ribbons into smaller segments.

Recently, several SEM-based serial section systems have been

developed that avoid mounting ultrathin sections on slot grids.

Two of these are serial imaging methods that are freed of the

constraint of retaining intact sections, as well as facilitating a larger

total axial imaging dimension. In these systems, backscattered

electrons are detected to image directly from the block face that is

serially removed either by a focused ion beam (FIB-SEM) [37,38]

or a diamond knife inside the SEM chamber (SBFSEM) [36].

Although FIB-SEM and SBSEM avoid ultrathin sectioning, the

lateral resolution is currently lower than tSEM. Although

microtubules and other small organelles have been detected in

images acquired with FIB-SEM and SBFSEM [36,37], our

experience is that reliable identification and quantification,

especially of microtubules, smooth-endoplasmic reticulum, and

other small tubular structures in cross-section, becomes difficult or

impossible at lower lateral resolutions [17,19,29,30]. In addition,

the image volumes obtained through FIB-SEM are currently too

small to provide the circuit scale volumes achieved by the new

tSEM system. Furthermore, the destructive nature of these block

face imaging approaches does not allow for post-embedding

immunolabeling, or for re-imaging of particular regions of interest

at higher axial resolution through TEM tomography.

Low accelerating voltages are desirable for backscatter detection

in that they improve lateral resolution, though at the expense of

signal to noise ratio and dwell time. Another aspect of the

backscatter imaging methods merits consideration: the depth of

the tissue volume that interacts with the electron beam and emits

the signal (i.e., backscattered electrons) depends on several

parameters, including the accelerating voltage and the density of

the tissue and stains. In the block face imaging methods, the signal

depth does not always correspond with the thickness of the tissue

removed by the knife or the FIB leaving open the possibility for

oversampling from overlap of imaged tissue, or undersampling

which would produce missing volumes where the amount of tissue

removed is greater than that imaged on the block face. This

potential for oversampling or undersampling of the tissue can

affect quantitative analysis of small structures. In contrast, the

projected images from the tSEM and TEM systems contain all of

the objects, although some may be buried within the section depth.

shaped spine (sp1) with postsynaptic density (PSD), making a synapse with an axonal bouton (b) containing synaptic vesicles (SV). This bouton also
makes a synapse with another spine (sp2). These spines and bouton are wrapped around by an astrocytic process that contains glycogen granules (G)
and polyribosomes (PR). A tubule of smooth endoplasmic reticulum (SER) and mitochondrion (mito) are located in the dendritic shaft. Cross-
sectioned microtubules (mt) are clearly visible in an adjacent dendrite (den2), which also contains a mitochondrion (mito). B1–3: A mushroom-shaped
spine (sp) on a dendrite (den) makes a synapse with a thickened PSD on an axonal bouton (b) containing synaptic vesicles (SV). A tubule of SER is
visible at the base of this spine, along with a cluster of polyribosomes (PR). Cross-sectioned microtubules (mt) are also visible in this dendrite, which
also contains a mitochondrion (mito). Clusters of polyribosomes (PR) are visible adjacent to a mitochondrion (in B2–3). Glycogen granules (G) are
found in a neighboring astrocytic process (a). The original pixels are retained in all images in this figure. Only brightness and contrast were adjusted
to match images acquired on the two EM platforms.
doi:10.1371/journal.pone.0059573.g003

Figure 4. Image distortion analysis. A: tSEM full field distortion
magnitude, corresponding to 24,000624,000 pixel image. Maximum
distortion magnitude is 37.93 pixel (rms= 9.68 pixel). This is equivalent
to 0.04% rms distortion. B: tSEM field in A was cropped to the size
equivalent TEM field (4,09664,096 pixels). Note the scale bar is
necessarily different. Maximum distortion magnitude is 0.55 pixel
(rms = 0.19 pixel). This is effectively zero distortion, equivalent to
0.0047% rms distortion. Since we cannot accurately measure stretch
and shear in the calibration replica, we ignore affine distortion modes.
doi:10.1371/journal.pone.0059573.g004
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Since the sectioning and imaging in tSEM and TEM are non-

destructive, re-examining small objects within the thickness of the

sections can be done on the same grids using TEM tomography.

In the future, it should be possible to exploit the robust control of

stage, beam, and scan, as well as detector variety of tSEM to

perform tomography [56] and improve axial resolution in the

tSEM while performing large field imaging.

In other SEM-based backscatter imaging methods, serial

ultrathin sections are collected on electron-opaque substrates,

such as plastic tape (automatic tape collecting ultramicrotome or

ATUM) [57], carbon-coated glass coverslips (array tomography)

[28], or silicon wafers (serial section scanning electron microscopy

or S3EM) [27]. In these applications, the issue of oversampling is

mitigated by physical ultrathin sectioning of the tissue. However,

lateral resolution may not be sufficient for the nanoscale analyses

required for our studies. Specimen charging is known to affect

lateral resolution in these low-voltage backscatter imaging

methods, which may require additional carbon coating of the

Figure 5. Field size comparison of images acquired on tSEM vs. TEM. This single field image of the rat hippocampal dentate gyrus (inner
molecular layer) was acquired on tSEM originally at 32,768632,768 pixels, or 65.54 mm665.54 mm at 2 nm/pixel. Three astrocyte soma with round
nuclei (a) and part of a capillary (c) are visible in this image. Boxed area indicates the size of a single field that can be imaged on our TEM (4,08064,080
pixels, or 8.16 mm68.16 mm at 2 nm/pixel). Note that the size of TEM field is similar to that of the nucleus of an astrocyte. The image has been
adjusted for brightness and contrast, and re-sampled from the original pixel dimensions to 1,83661,836 pixels during preparation of this figure.
doi:10.1371/journal.pone.0059573.g005
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Figure 6. Field size comparison of images acquired on tSEM and two-photon laser-scanning microscope (2PLSM). A: A tSEM image
containing a mosaic of 7 image tiles, from rat hippocampal area CA1, with the field size measuring 67 mm6399 mm. Overlaps between image tiles
appear as lighter bands. Soma of the pyramidal neurons are indicated by ‘‘+’’. The original image tiles were taken as 1061 mosaic covering
608 mm665 mm area (32,768632,768 pixels per tile at 2 nm pixel size), encompassing all layers in the area CA1 (SO= Stratum Oriens; SP = Stratum
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specimen (e.g., [28]). Charging can be reduced by the use of

conductive silicon wafers [27] or carbon-coated glass coverslips

[28] as specimen substrate. A recently developed method for en bloc

heavy metal staining also helps to reduce specimen charging by

making the biological specimen more conductive for block face

imaging with backscattered electrons [58]. As noted above

(Methods), we have not experienced charging of ultrathin sections

prepared in the same manner as for TEM when imaged with

tSEM at relatively high voltage (28 kV).

With the tSEM system, we were able to increase substantially

the size of single-frame images by montaging with minimal total

overlap. Another approach to increase the size of the imaging field

has used a custom-built TEM with an array of four CCD cameras

(TEMCA) to acquire image mosaics rapidly across individual serial

ultrathin sections [15]. However, TEMCA requires substantial

modification to the instrument (e.g., custom-built electron optics

and camera systems) and specialized computational tools for image

mosaicking and registration. Thus, the cost and limited availability

of such a specialized custom-built system is prohibitive for most

EM laboratories.

Concluding Remarks

This new tSEM system is based on the detection of transmitted

electrons on the FE-SEM platform and offers a cost-effective and

labor-reducing method to obtain tissue volumes on the order of

104–105 mm3. This volume range is suitable for reconstruction of

local circuits, such as determining synaptic relationships between

an interneuron and neighboring pyramidal cells, or the compo-

sition of synapses in the neuropil within the domain of a single

Pyramidale; SR = Stratum Radiatum; SL-M= Stratum Lacunosum Moleculare). The image tiles were stitched together with Fiji/TrakEM2, down-sampled
to 223 nm pixel size, rotated 90u, and cropped to 30361792 pixels (67 mm6399 mm) to scale with the image in B. B: A pyramidal neuron in the rat
(10-week old) hippocampal area CA1 was filled with Alexa 594 dye (40 mM) with a patch pipette (#). The original fluorescence image stack was
acquired using laser tuned to 880 nm (Spectra Physics Mai Tai) on a 2PLSM (Leica SP 5 RS) with a 206water immersion objective (N.A. = 1.0). Image
field size was 102461024 pixels (455.88 mm6455.88 mm and 120 mm deep; 255 optical sections), which was then projected and cropped to 3846896
pixels (171 mm6399 mm). White box indicates calculated field for imaging with a 636 objective and 26 digital zoom (i.e., 455.88 mm/[63/20]/
2 = 72.36 mm), which is on the order of single field size of a tSEM image. Scale bar is valid for both A and B. Image courtesy of R. Chitwood, Center for
Learning and Memory, The University of Texas at Austin.
doi:10.1371/journal.pone.0059573.g006

Table 1. Comparison of the new tSEM versus TEM systems.

tSEM TEM

Platform FE-SEMa TEM

Specimen holder multiple grids at a time usually one grid at a time (some special holders)

Illumination rastered probe entire image field

Accelerating voltage 28 kV 120 kV

Detection method transmitted electron detector CCD camera

Automation Routine: Stage translation, image optimization (focus,
brightness, etc.), image acquisition, and mosaic.

Specialized: Some modules for focus and astigmatism
compensation, some mosaic functions.b

Usual operator involvement Identify center of image fields & set scan rotation on
each section

Repeated specimen exchange & stage translation,
physical specimen rotation, image optimization &
acquisition

Relative cost of instrument: ,Half that of manual TEM

(a) Optimal pixel size (in x–y) for analysis 2 nm 2 nm

(b) Section thickness 45 nm 45 nm

Voxel size ( =a6a6b) 2 nm62 nm645 nm 2 nm62 nm645 nm

(c) Typical number of serial sections 200 200

(d) Maximum single field dimensions 32,768 pixels per side 4,080 pixels per side

(e) Maximum single image field dimensions
( =a6d)

65.54 mm per side 8.160 mm per side

(f) Maximum single image field area ( = e6e) 4,295 mm2 66.59 mm2

(g) Volume of imaged tissue ( =b6c6f) 38,660 mm3 599.3 mm3

Total number of voxels ( = c6d6d) 2.14761011 voxels 3.3296109 voxels

(h) Operator time to acquire single field image
over 200 sections

,4 hr (plus additional ,74 hr for unattended image
acquisition).c

,40 hr.

Volume of imaged tissue per operator time
( =g/h)

9664 mm3/hr 14.98 mm3/hr

aAt the time of this writing, Zeiss is the sole source of the FE-SEM system designed for high-resolution large-field transmission imaging of biological samples as
described here.
bTEM can be retrofitted to acquire mosaic images automatically with open source software such as Leginon (National Resource for Automated Molecular Microscopy,
The Scripps Research Institute; http://www.leginon.org/) and SerialEM (The Boulder Lab for 3D Electron Microscopy, University of Colorado; http://bio3d.colorado.edu/
SerialEM/).
cNote that the operator time for tSEM remains constant for the same number of serial sections, even when the volume size is increased by montaging.
doi:10.1371/journal.pone.0059573.t001
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astrocyte. This level of analysis provides the opportunity to

investigate many aspects of synaptic development and plasticity,

while maintaining sufficient resolution to investigate changes in

local subcellular components indicative of modified functions.

Obviously, this new tSEM approach is not limited to investigation

of brain tissue, but is generally applicable to all biological

specimens prepared for standard ultrastructural analyses. Further

improvements in computational tools will greatly facilitate 3D

reconstruction and investigation of these large volumes.

Supporting Information

Movie S1 Serial tSEM images aligned with elastic
alignment tool. Here 201 serial section images were acquired

from the rat dentate gyrus on tSEM at 16,384616,384 pixels

(2 nm/pixel), and aligned as described in Methods using Fiji/

TrakEM2 software. The aligned images were then cropped to

12,83066,861 pixels (25.66 mm613.72 mm) and down-sampled to

1,9206799 pixels in Fiji/TrakEM2. The image histograms were

adjusted using Fiji with the ‘‘Enhance Local Contrast (CLAHE)’’

plugin (http://fiji.sc/wiki/index.php/

Enhance_Local_Contrast_%28CLAHE%29) before this movie (7

frames/sec) was generated. This movie demonstrates the effec-

tiveness of the elastic alignment tool, where the presence of various

section artifacts (e.g., folds and staining artifacts) does not affect the

alignment of artifact-free regions across large serial tSEM images.

(ZIP)
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