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Abstract Establishing meaningful relationships between
cellular structure and function requires accurate morpho-
logical reconstructions. In particular, there is an unmet
need for high quality surface reconstructions to model
subcellular and synaptic interactions among neurons and
glia at nanometer resolution. We address this need with
VolRoverN, a software package that produces accurate,
efficient, and automated 3D surface reconstructions from
stacked 2D contour tracings. While many techniques and
tools have been developed in the past for 3D visualization of
cellular structure, the reconstructions from VolRoverN meet
specific quality criteria that are important for dynamical
simulations. These criteria include manifoldness, water-
tightness, lack of self- and object-object-intersections, and
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geometric accuracy. These enhanced surface reconstruc-
tions are readily extensible to any cell type and are used here
on spiny dendrites with complex morphology and axons
from mature rat hippocampal area CA1. Both spatially real-
istic surface reconstructions and reduced skeletonizations
are produced and formatted by VolRoverN for easy input
into analysis software packages for neurophysiological sim-
ulations at multiple spatial and temporal scales ranging from
ion electro-diffusion to electrical cable models.

Keywords Electron microscopy · Serial sections · 3-D
reconstruction · Neuropil · Skeletonization · Reduced
model · Electrophysiology

Introduction

Brains are richly structured at the cellular and subcellular
level as evidenced by the diversity in form of synapses, the
compartmentalization of synaptic spines on dendrites, the
intricate branching of dendrites and axons, and the complex
inter-digitation of glial processes (Sorra and Harris 2000;
Andersen et al. 2006). Clinical findings reveal dramatic
disruption in the structure and subcellular composition
under a variety of neuropathies (Fiala et al. 2002; Ramı́rez
and Couve 2011; Liu et al. 2011; De Rubeis et al. 2012;
van Spronsen and Hoogenraad 2010; Kuwajima et al.
2012). Recent advances in imaging are beginning to pro-
vide access to an unprecedented amount of structural data
from serial section electron microscopy (EM) at nanometer
resolution (Denk and Horstmann 2004; Hayworth et al.
2006; Knott et al. 2008; Bock et al. 2011; Kuwajima et al.
2013; Kleinfeld et al. 2011; Briggman and Bock 2012;
Helmstaedter and Mitra 2012). A number of software pack-
ages have been developed to support three-dimensional
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reconstruction from EM images such as RECONSTRUCT™

(Fiala 2005; Lu et al. 2009), TrakEM2 (Cardona et al. 2012),
ilastik (Sommer et al. 2011), NeRV (Jurrus et al. 2012),
NeuroTrace (Jeong et al. 2010), KNOSSOS (Helmstaedter
et al. 2011; Briggman et al. 2011); however, their surface
representations were developed primarily for rapid visual-
ization and are insufficient to serve as a framework for
dynamical simulations.

Any algorithm for reconstruction of brain geometry from
serial sections must confront the challenge posed by struc-
tures that are smaller than section thickness (∼45 nm)
(Harris et al. 2006). Objects within the thickness of the
section can be obscured by overlapping structures in the
projected EM image. Consequently, ambiguous geometries
arise in the reconstruction of fine structure that is under-
sampled by the image data and incorrectly represented by
extracted contours, frequently yielding 3D objects that are
non-physiological, e.g. with aberrant holes in the surface or
erroneous connections between cells.

VolRoverN is a new software package that accepts as
input the contour tracings from existing software tools, and
automatically generates reconstructions that are physiolog-
ically plausible and formatted for easy input into other
software tools for simulation of neuronal or other cellu-
lar dynamics. VolRoverN makes implementations of pub-
lished algorithms available to practitioners in an intuitive,
comprehensive interface, easing the task of model genera-
tion. We describe the functionality of VolRoverN, including
accurate 3D surface reconstructions from manual contour

tracings and production of derivative skeletonizations from
these reconstructions. We enumerate common errors in
surface reconstruction and demonstrate VolRoverN’s ability
to produce error-free, quality reconstructions.

Functionality

VolRoverN is freely downloadable at http://cvcweb.ices.
utexas.edu. It is currently available on the Mac OS X
platform, and we anticipate release for Linux and Win-
dows platforms. With the VolRoverN download is a sample
dataset with contours and images of 8 axons and 2 dendrites
in the CA1 region of the hippocampus. All images in this
paper were produced using this dataset. A shared data repos-
itory will also be available where users of VolRoverN can
share images, traces, 3D meshes, and simulation files for
NEURON and MCell.

VolRoverN accepts RECONSTRUCT™ and TrakEM2
contour tracings as input. In the case of TrakEM2, the
tracings are pixel-based and are automatically converted to
polygonal representation by VolRoverN. Aligned and seg-
mented images can also be imported into VolRoverN for
visualization purposes.

The software first fits a triangulated surface to contours
such that the contours are exactly interpolated and the sur-
face meets important quality criteria. We list and show
examples of violations of these criteria in Fig. 1. Prop-
erties of quality reconstructions include water-tightness,

a b c d
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Fig. 1 Requirements for quality surface models. The illustrations
demonstrate errors commonly encountered in morphological recon-
structions of neurons. a Surface models should be water-tight, or
free of holes. b A normal vector is associated with each facet in
a mesh representation, and all facets should be consistently ori-
ented. c Vertices should not be coincident with edges of other
facets. d A surface is manifold if an arbitrarily small piece of the
surface is a topological disk. In this example the point at which
the two surfaces meet is not a topological disk. e In this exam-
ple, two spine heads are erroneously joined during the reconstruc-
tion process. Meshes should be topologically consistent with the

physical specimen they are approximating. f In a mesh representation,
the facets (most commonly triangles) should be of good quality. In
the case of a triangle, one definition of quality is that the ratios of
edge lengths are close to one, or the triangle is close to equilateral.
g A very common error in existing neuropil reconstruction methods
is object-object intersections. Also common are triangle intersections
within the same object. h Surface reconstructions should interpo-
late, or pass exactly through, the original contour tracings (red). The
figure shows an example of error in interpolation. Both VolRoverN
and marching cubes are error-free in that they exactly interpolate the
contours

http://cvcweb.ices.utexas.edu
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Fig. 2 A high-level look at
VolRoverN’s functionality.
There are four main phases: 2D
processing, 2D to 3D
reconstruction, 3D processing,
and 3D to 1D reduction

manifoldness, lack of intersections, quality (close to equi-
lateral) triangles, and geometric accuracy. With the sur-
face mesh in place the user can make geometric queries,
such as surface area and volume of a spine head.
Further, VolRoverN provides tools to create derivative
models, including 1D cable models. The various mod-
els can be saved in standard file formats, including
Wavefront obj, OFF, ele/node, MDL (MCell), and HOC
(NEURON).

VolRoverN shares a code base with the related software
package VolRover 2.0 (Zhang et al. 2012) which performs
image processing, reconstruction and visualization of sin-
gle particle and tomographic cryo-EM and includes 3DEM
molecular ultra-structure identification and quasi-atomistic
model-based refinement. As such, VolRoverN and Vol-
Rover 2.0 have similar look and feel, but the tools included
in VolRoverN are appropriate primarily for neuronal
modeling.

VolRoverN has 4 steps in producing models suitable
for analysis (Fig. 2). (1) Process 2D input. (2) Fit a 3D
triangulated surface to the contours. (3) Process the 3D

surface meshes, which includes improvement of the mesh.
(4) Reduce the mesh to a 1D cable model. We now discuss
each of these steps.

2D Processing

Contour Intersection Removal

Contours are given as closed, simple polygons. Contours
may be nested, as is the case with surface dimples and
organelles. Each contour has a label that corresponds to a
unique neuronal process, for example, “axon16” or “den-
drite3”. Manually-traced contours can accidentally intersect
each other and these overlaps must be removed. VolRoverN
has an automatic intersection removal algorithm (Edwards
and Bajaj 2011) (Fig. 3) that not only ensures that con-
tours don’t intersect each other, but has an optional feature
of guaranteeing a minimum separation distance (Kinney
et al. 2013). The 2D intersection removal algorithm is
purely geometric and does not take the EM images into
consideration.

Fig. 3 2D curation. Because
components are usually traced
independently of each other,
intersection errors can occur. a
A number of intersections and
close approaches can be seen
between contours. b The
intersections have been removed
and a user-specified contour
spacing is enforced

a b
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2D to 3D

ContourTiler

VolRoverN has a 2D image and contour display called the
Section Viewer (Fig. 4a) that enables navigation through
sections while inspecting contours. The Section Viewer and
3D Viewer are linked: imagery and semi-transparent con-
tours can be visualized in the 3D view alongside surface
meshes and volumes (Fig. 4b, c). VolRoverN includes a tool
called ContourTiler (Bajaj et al. 1996; Edwards and Bajaj
2011) that fits a triangulated surface to a set of 2D polygonal
contours derived from EM images. We call these triangles
“tiles”. Three attributes of neuronal data make reconstruc-
tion non-trivial: (1) ssEM data is highly anisotropic. In-
plane pixel resolution is usually about 2–5 nm, whereas
spacing between sections is usually 45–70 nm. (2) Neurons
are tortuous, with frequent twists and branching. (3) Neu-
ronal processes are tightly packed. These three attributes
make reconstruction of intersection-free surface meshes
especially difficult for such complex morphologies. Other
cell types, such as glia, can have similarly complex surfaces.

ContourTiler matches adjacent contours with identical
labels and fits a surface between them. Matching is com-
monly referred to as the correspondence problem, i.e.,
whether two contours with identical labels in adjacent
sections should be connected topologically. The correspon-
dence problem is difficult and many methods have been
used to solve it, including user consensus (Helmstaedter
et al. 2011) and machine learning (Chklovskii et al. 2010).
Our algorithm uses a simple heuristic, that of matching con-
tours from adjacent sections together if their projections
onto the plane intersect, which results in sensitivity to image
registration quality. Our heuristic can also result in errors
when small contours that are oriented obliquely to the image
plane have grey boundaries that are difficult to trace, which
may result in corresponding contours that don’t overlap.
Technology development in high-throughput microscopy
promises to reduce the thickness of tissue sections (REF),
which will lead to asymptotically better performance of
our simple heuristic. Nevertheless, we anticipate incorpo-
rating more sophisticated correspondence predicates in the
future.

Our tiling algorithm requires that the contours have no
intersections, which is taken care of in our 2D contour
intersection removal step. In addition, the contours are
assumed to be registered, or aligned. Registration is typi-
cally done using the EM images (Saalfeld et al. 2012) and
the resulting 2D transformations are applied to the con-
tours. An important property of our reconstruction approach
is that the reconstructed surface exactly interpolates the
input contours, so no error in the original section planes is
introduced.

a

b

c

Fig. 4 Reconstruction from 2D contours. a Input to VolRoverN is a
set of 2D polygonal traces, or contours, derived from EM images. b
Software embedded in VolRoverN called ContourTiler fits a triangu-
lated surface to each set of contours to produce a 3D surface model.
c Multiple components are combined using ForestTiler such that they
are free of intersections

ForestTiler

ContourTiler produces a surface for each individual object.
These surfaces are then combined together into a sin-
gle geometry file that contains all of the objects. When
the section spacing is very large, as is the case with
anisotropic data, combining object meshes yields many
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Fig. 5 Mesh improvement. a
The original reconstructed
triangulation of a dendrite and
axon. The horizontal bands in
the surface mesh reflect the
separation between EM images
of thin tissue sections. b The
reconstruction after decimation
and smoothing. The final
triangulation has fewer than half
the triangles as the original and
the triangles have far better
aspect ratio. c Repair utilities in
VolRoverN include manifold
correction and hole filling. The
figure shows a hole outlined in
red. d After hole filling. The
before/after ratio of total mesh
surface area in this example was
32.7/32.8, for a total hole
surface area of 0.3 %

a b

c d

object-object intersections. Most solutions to the intersec-
tion problem are primarily used with reconstruction algo-
rithms that tend not to preserve correct topology in tightly-
packed data (Turk and O’Brien 1999). We have imple-
mented an algorithm called ForestTiler (Edwards and Bajaj
2011) that removes intersections in a way that preserves
the interpolation property of the original reconstruction.
In addition, similar to 2D contour curation, the user can
specify a minimum separation distance δ, which corrects
the reconstruction of unknown regions (between sections)
to more closely match empirically determined extracel-
lular spacings (Kinney et al. 2013). ForestTiler does not
take membrane junctions into account, but a small value
for distance δ may be specified to preserve very close
spacing.

3D Processing

Mesh Quality Improvement

VolRoverN includes a suite of tools to produce meshes with
good quality triangles, i.e. triangles that are close to equi-
lateral. The first tool is decimation, which uses the QSlim
algorithm (Garland 2004) to reduce the number of triangles.
QSlim is an edge-collapse algorithm that is popular because
of its speed and robustness. We then use the geometric-
flow mesh improvement algorithm of Zhang et al. (2005,
2009) that produces a surface mesh with triangles of good
aspect ratio (Fig. 5a, b). The mesh improvement algorithm
can be iteratively applied for increasing triangle quality.
Quality improved meshes are not guaranteed to meet the

contour interpolation property. VolRoverN also has mesh
repair utilities (Fig. 5c, d) to repair errors such as holes,
non-manifoldness and self-intersections. Non-manifoldness
and self-intersections are repaired by automatic removal of
offending triangles. Resulting gaps are then closed using
our hole-filling tool, which uses an ear-clipping algorithm
(O’Rourke 1994). Our mesh repair utilities are general and
can be applied to problematic meshes from other reconstruc-
tion software packages. Simplification, improvement, and
mesh fixing are intended to be applied as follows:

1. Simplification
2. Improvement
3. Repair
4. Improvement

Repair is generally more effective if the model has already
been simplified and improved. It is often best to finish with
the improvement step as repair can introduce poor quality
triangles.

Complementary Space and Tetrahedralization

A feature of VolRoverN is automatic complementary space
(CS) generation outside of (and complementary to) water-
tight surface meshes and inside a bounded region of interest.
The user is able to define a bounding box and the CS tool
constructs a closed polyhedron with faces consisting of por-
tions of the surface meshes and the bounding box (Fig. 6).
The CS polyhedron converges to a model of extracellular
space (ECS) when the input surface meshes are a complete
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Fig. 6 VolRoverN utilities. a A
bounding box is placed around
the surface meshes in an area of
interest. b The surfaces are
clipped at the bounding box. c
VolRoverN’s ECS and
tetrahedralization tools create a
volumetric model of
complementary space. d
Tetrahedralization of a dendrite
using VolRoverN’s
tetrahedralization tool

a b c

d

description of cells within a bounding box. Models of ECS
have been used in reaction-diffusion simulations (Kinney
2009; Kinney et al. 2013).

VolRoverN also has the capability of tetrahedralizing sur-
face meshes (Bajaj et al. 1999; Zhang and Bajaj 2006;
Zhang et al. 2010) (Fig. 6d). This uses an adaptive sub-
division meshing algorithm contained in a library from
our Level Set Boundary-Interior-Exterior (LBIE) software
package (CVC 2013). Tetrahedra are exported in RAW and
ele/node formats for ease of import into simulation packages
such as STEPS (Hepburn et al. 2012).

Comparison to Other Surface Reconstructions

Standard algorithms such as marching cubes, which
is used in most popular contouring software packages
(Cardona et al. 2012; Sommer et al. 2011; Jurrus et al.
2012), yield large numbers of intersections between objects
when the objects are tightly packed (Fig. 7). Addition-
ally, marching cubes produces blocky reconstructions with
poor geometric accuracy due to its lack of interpolation
between contours. This is especially evident with neu-
ronal EM images that are highly anisotropic. Our algo-
rithm resolves both problems, producing surface meshes
that are intersection-free and linearly interpolated between
contours.

Here we compare ContourTiler with the implemen-
tation of marching cubes found in TrakEM2 (ImageJ)

(Schmid et al. 2010; Cardona et al. 2012) and the Bois-
sonnat algorithm implemented in the RECONSTRUCT
software (Boissonnat and Geiger 1992). We compared
object-object intersections and geometric accuracy, as well
as water-tightness and manifoldness. Other important sur-
face mesh qualities (oriented normals, regularity, topolog-
ical correctness, and contour interpolation) are met by
all three algorithms. We reconstructed the 8 axons and
2 dendrites in the sample dataset distributed with Vol-
RoverN using both RECONSTRUCT and VolRoverN and
compared the results by quantifying the most common
errors of those described in Fig. 1. Figure 7a–d show
reconstruction of two axons in close proximity (a001 and
a020 from the sample dataset) using the three reconstruc-
tion methods. VolRoverN meshes are free of intersections
between multiple objects, in contrast to surfaces produced
by the marching cubes and the Boissonnat algorithms.
The Boissonnat and marching cubes representations yield
a large number of intersections, whereas the VolRoverN
surfaces are entirely free of intersections because Vol-
RoverN meshes are guaranteed to have a user-specified
minimum spacing between objects. Meshes produced by
VolRoverN interpolate, or pass exactly through, the input
contours. To quantify surface error in regions between con-
tours we compared surfaces produced by VolRoverN and
the other two algorithms to a C1-continuous surface fit-
ted to the contours. The distribution of errors is reported
in Fig. 7e and shows that VolRoverN’s reconstructions
are geometrically very similar to the RECONSTRUCT
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Fig. 7 Comparisons with RECONSTRUCT™ and TrakEM2. a–
b Comparison between RECONSTRUCT™ (Boissonnat) and Vol-
RoverN surfaces using axons a001 and a020 from the sample
dataset. Part of a020 is cut out to see the interior intersections.
The RECONSTRUCT surfaces yield a large number of intersections
between objects. Output from ForestTiler is intersection-free. c–d
Comparison between TrakEM2 and VolRoverN surfaces. A portion
of two axons are reconstructed with ImageJ’s marching cubes imple-
mentation (resample=1, no smoothing) and the top is lifted to reveal
the interior. Marching cubes yields numerous intersections between
objects. Output from ForestTiler is intersection-free. e Geometric
error measured as distance from a reconstruction to a C1-continuous
approximating surface. This is a cumulative plot of percentage of

sample points within a given error. 100,000 sample points were taken.
VolRoverN and RECONSTRUCT have far less geometric error than
TrakEM2. To create the C1-continuous surface SC1, we randomly
choose 4 adjacent, non-bifurcating contours (called c1, c2, c3, and c4)
and fit cubic B-splines to each of them using a least-squares fit. We
then join the contours together with interpolating cubic curves, form-
ing a patch that is C1-continuous everywhere between c1 and c2. The
data used in this test are from axon a001 between slices 115 and 118.
f Comparison of quality of triangles between the three reconstruction
methods. We define triangle ratio as rc/2ri where rc is the circum-
radius and ri is the inradius of a triangle. The ideal triangle ratio
is 1. The plot is a cumulative percentage of triangles below a given
ratio

implementation of the Boissonnat algorithm, both of which
are closer to a smooth approximation than marching cubes.

Triangle quality is another important measure of how
successful a simulation will likely be in terms of error

convergence (Shewchuk 2002). Figure 7f illustrates how
VolRoverN outperforms both other methods in terms of tri-
angle aspect ratio (ratio of the circumradius to twice the
inradius).
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Using VolRoverN Output in Simulations

3D to 1D Skeletonization and Surface Segmentation

Cable model simulation requires 1D skeleton models of
neurons. Cable models are typically created with neurite
tracing software, but VolRoverN utilizes surface meshes to
generate 1D models automatically. VolRoverN decomposes
the mesh into cylindrical chunks using an algorithm that first
finds a skeleton of the surface mesh (Fig. 8a) using an iter-
ative Laplace contraction algorithm (Au et al. 2008). The
skeletonization algorithm induces a surface segmentation as
a side effect. The segmentation is not perfect, so VolRoverN
performs operations to repair and smooth the segmenta-
tion, resulting in regions such as those shown in Fig. 8b.
Each of these regions is approximated with a 1D segment
with length and diameter (and thereby volume and surface
area) properties. These segments are typically conceptual-
ized as generalized cylinders. Our decomposition algorithm
preserves volume, that is, the sum of all cylindrical region
volumes equals the volume of the polyhedron. VolRoverN
reports surface area and volume of regions of a recon-
structed object. After surface segmentation, the user can
discover geometric measurements of segments (e.g. Fig. 8b)
by clicking on the region.

NEURON

VolRoverN’s skeletonization tools are used to automatically
reduce the surface representation to a multicompartmen-
tal cable model and simulate ion channel-driven dynamics
of membrane voltage in NEURON (Carnevale and Hines
2006). NEURON is a simulation software that implements
multi-compartment models of electrical signaling based on
cable theory (Fig. 8c). VolRoverN outputs to a NEURON
HOC file, which contains length and diameter properties
for each region as well as connection properties defining
their topological connectedness. The output HOC file also
contains a skeleton simulation function. As reduction to 1D
includes a coarsening of resolution, we expect NEURON
simulation results to be similar regardless of reconstruction
algorithm used.

MCell

VolRoverN also enables MCell simulations. MCell (Stiles
et al. 2001; Kerr et al. 2008) is a software package that
simulates multi-ion species reaction-diffusion using Monte
Carlo algorithms over geometrically complex domains. Vol-
RoverN’s ForestTiler and mesh improvement tools were
used to generate surface triangulations of an individual axon
and dendrite in the VolRoverN sample (Fig. 9a). The MCell
export tool in VolRoverN writes a given surface mesh to an

a b

c

Fig. 8 Multi-compartment model generation. Our surface segmenta-
tion first skeletonizes the mesh (a), which induces a segmentation (b).
Each segment is in a different color in the figure. After correction,
the segmentation can be used to produce surface area/volume statistics
of different regions as well as labeling different regions for ion dif-
fusion studies. This graphic shows a simple cable model simulation.
The compartmentalized versions of the axon and dendrite are input to
NEURON. A synapse with a threshold and delay is added between
the dendrite and axon and a point charge is placed at the end of the
axon. Three potential measurements are made over time. Arrow col-
ors correspond the potential measurements reported in the NEURON
simulation graph in figure (c)

MCell MDL file. As noted, these meshes are required to be
water-tight, manifold, and free of self-intersections which
can be repaired, if necessary, using VolRoverN’s mesh
repair utilities. A complete physiological simulation study
was set up with the CellBlender software package (http://
www.mcell.org) using the MCell MDL geometry files. The
geometric analysis tools in CellBlender confirmed that the
imported MDL meshes were of computational quality for
use in simulations. CellBlender was then used to gener-
ate and run an MCell simulation of glutamatergic synaptic
transmission at a synapse between the axon and dendrite
(Fig. 9b). Figure 9c shows the time course of activation of
synaptic receptors by diffusing neurotransmitter molecules
released at the synapse.

Direct comparison of MCell simulations using Vol-
RoverN, Boissonnat, and marching cubes models has not
been informative because reaction-diffusion simulations
such as MCell require geometric consistency. Meshes with
errors are rejected outright with an error message. As shown

http://www.mcell.org
http://www.mcell.org
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a b

c

Fig. 9 MCell reaction/diffusion simulation of synaptic transmission
from generated model. Generated meshes of axon (green) and dendrite
(yellow) were imported into CellBlender to create an MCell simu-
lation from the meshes. Images were rendered using CellBlender. a
The axon and dendrite. b Visualization of synaptic transmission 100
microseconds after release of 2000 molecules of the neurotransmit-
ter glutamate (small green ellipsoids). 10 NMDA receptors (NMDAR)
and 100 AMPA receptors (AMPAR) were placed at the synaptic con-
tact area between the axon and dendrite (small red patch of membrane

on the dendrite). Color indicates state of activation of the receptors.
At 100 microseconds, the glutamate has started to bind and activate
some receptors and has started to spill out of the synaptic cleft space
into the surrounding volume. c Time course of activation of AMPARs.
AMPAR can be in 7 states: c0 (unbound state), c1 (one glutamate
bound), c2 (two glutamate bound), c3 (one glutamate bound, desensi-
tized state 1), c4 (two glutamate bound desensitized state 2), c5 (two
glutamate bound, desensitized state 3), and O (two glutamate bound,
ion channel open)

in Fig. 7a and c, Boissonnat and marching cubes mod-
els have large numbers of intersections between objects,
causing attempted simulations to fail.

Volume Rendering and Isocontour Visualization

VolRoverN’s volume rendering capabilities and isocontour
visualization tools enable interactive visual exploration of
topology and geometry. Volume renderings include the
capacity to illustrate numerous objects of varying color and
transparencies (Fig. 10a) which can also be illustrated as
NEURON-ready skeletons (Fig. 10b) and include intracel-
lular organelles (Fig. 10c).

The signed distance function (SDF) in VolRoverN is
a tool that produces a volume of scalar values (a volu-
metric scalar field) representing the distance from a sur-

face. SDF, together with VolRoverN’s volume rendering
capabilities (Fig. 10) and isocontour visualization tools,
enables interactive visual exploration of topology and
geometry of isosurfaces (also called level sets) at various
isovalues (level-set values) of the magnitude of the SDF.
VolRoverN volume renders scalar fields (stored in HDF5
format) and geometries together and seamlessly. The trans-
fer function tool supports both color and transparency ramps
across the spectrum of level-set values in a volume and
is used to color and achieve see-through translucency. The
fast isocontour visualization (Bajaj et al. 1996) capability
within VolRoverN enables interactive visual exploration of
volumetric scalar fields through rendering of isosurfaces
generated for distinct isovalues. Fast isocontour visualiza-
tion when applied to SDF of input surfaces of complicated
topology and geometry, provides for a quick visual surface
exploration of the topological and geometric complexity
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Fig. 10 Volume rendering with
geometry rendering. a Axons
rendered with semi-transparent
dendrites. b A view of a
skeletonization of all axons and
dendrites in the sample dataset.
Skeletons can be saved in OFF
and raw file formats. c A
dendrite is rendered with semi-
transparent volume rendering to
reveal mitochondria. ForestTiler
naturally supports nested
components

a b

c

(Fig. 11). SDF fields of surfaces produced by ForestTiler
can be examined for changes in their level-set topology
and geometry. Fast isocontour visualization also provides
a means to explore visually the results of function fields

produced in simulations. A supporting topological visual-
ization tool is the contour tree (Carr et al. 2000; Zhang
et al. 2006) where branching reveals the splitting of level
sets across the entire range of level-set values (Fig. 11a–c).

a b c

d

Fig. 11 Isosurfaces of a signed distance scalar field generated from
a triangulated surface model of a dendrite, and at different isovalues.
Isosurfaces are computed from surface geometries and are useful in
characterizing object shape. The contour tree at bottom shows the topo-
logical branching structure of the isosurface. The vertical line in the
contour tree shows the isovalue of the surface relative to the tree. a
is close to the true surface, as at that isovalue the contour tree is a
confluence of branches into one. b and c are isosurfaces at progres-
sively larger absolute distance values. By convention, negative distance

values indicate points outside the object, while positive values are
for points inside. d The contour spectrum tool’s signature properties
plot window. Four attribute curves are shown: surface area (red); min
volume (green); max volume (blue); gradient weighted surface area
(yellow). The green isovalue node is at an isovalue for which sur-
face area and gradient weighted surface area curves are close to their
respective maximum values, which usually occurs near the zero iso-
value. The x axis represents distance from the original surface. Each
curve is normalized with respect to the y axis
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The contour spectrum (Bajaj et al. 1997) plot gives addi-
tional insight, showing signature curves representing the
variation of isosurface properties such as area, volume and
gradient (normal) magnitude across isovalues (Fig. 11d).
The spectrum plot helps quickly locate isovalues where
the isosurface properties become critical (e.g. maximum,
minimum, etc.).

Scalability and Performance

The algorithms used in VolRoverN are scalable. Our recon-
struction method linearly interpolates between sections, so
only two sections need be stored in memory at one time,
thus the memory requirements remain static with increas-
ing stack size. Memory also remains static with increasing
image resolution since the reconstruction algorithm uses
exclusively geometric contours and not the original images.
However, memory requirements do increase with larger
numbers of contours per image (such as would be the case
with larger image footprints), but memory goes up propor-
tionally to the number of contours. The fact that the Vol-
RoverN reconstruction algorithm operates only on pairs of
sections makes it an excellent candidate for parallelization,
a feature for future development.

ForestTiler and associated mesh improvement tools in
VolRoverN are efficient. We tested reconstruction time on
the sample dataset, which consists of portions of 8 axons
and 2 dendrites with a combined 129.32 µm2 surface area,
8.44 µm3 volume and 204,906 triangles. Reconstruction
took 6 min and 40 sec on a Linux Kubuntu workstation with
Intel Xeon 3.20 GHz quad core CPU and 4 GB of memory.
Decimation, triangle improvement and mesh fixing tools
took an additional 56 sec.

Discussion

VolRoverN plays a complementary role in the set of neu-
ronal morphology software. It provides tools to enhance
geometric understanding of 2D tracings and offers an alter-
native method of skeletonizing neurites. VolRoverN also
fills a critical gap, in that it produces meshes that are
manifold, geometrically accurate, water-tight, and free of
intersections. Before now, producing such reconstructions
required a large amount of manual work, but VolRoverN’s
powerful tools greatly reduce the amount of time and
domain knowledge required to prepare reconstructions for
geometric analysis. Reconstructions serve as substrate for
dynamical simulation of cellular activity.

VolRoverN accepts geometric contours as input. Thus,
success in quality reconstruction is at least partly dependent

on the quality of the contours produced using other software
tools. This is largely mitigated by visual proofing tools in
tracing software (Fiala 2005; Lu et al. 2009; Cardona et al.
2012). However, if surface reconstruction from VolRoverN
reveals errors in the contour tracings then the user can revert
back to the original tracing software for contour repair at
well-identified locations.

Representations of the cell surface enable simulations
using 3D boundary element methods (BEM) such as com-
bined Monte Carlo simulation of particle diffusion and
kinetic state-based modeling of protein dynamics at the
microsecond time scale by MCell (Kinney 2009; Kinney
et al. 2013). 3D finite element method (FEM) simula-
tions (Bajaj et al. 2010) of electro-diffusion with multi-
species continuum concentrations are enabled by decom-
posing a reconstruction into a collection of small vol-
umes. Also, by approximating neuronal geometry as a
collection of cylindrical compartments each aligned to seg-
ments of the geometry (Lindsay et al. 2004), and mod-
eling ionic conductance in each compartment with cou-
pled differential equations, one arrives at the traditional
cable simulation of electrical signals in the brain at the
millisecond scale, as supported by simulation software
such as NEURON (Carnevale and Hines 2006). Deriv-
ing these geometric representations of brain structure from
a single source (surface meshes) facilitates future multi-
scale simulations via coupled MCell, FEM and NEURON
models.

Third-Party Libraries VolRoverN uses several third-party
software libraries. The reconstruction tools use CGAL
(2013) and QSlim (Garland 2004). Rendering is done using
OpenGL and the interface uses the cross-platform GUI
package QT.

Data Sources Data used in the figures is from hippocam-
pal area CA1 of a postnatal day 77, perfusion-fixed, male
rat (Harris and Stevens 1989; Mishchenko et al. 2010). All
images are ssEM with 2 nm in-plane and 45 nm out-of-plane
resolution. Image size is 4K × 4K pixels. The dataset is
available as a sample with download of VolRoverN. All ren-
dered figures in this paper were produced using VolRoverN
except plots (prepared by gnuplot) and the MCell simulation
which used CellBlender (Fig. 9a, b).

Information Sharing Statement

VolRoverN binaries, a tutorial, and a sample dataset
are freely downloadable at http://cvcweb.ices.utexas.edu.
Source code is freely available at the same link for non-
profit institutions. We anticipate the future addition of a

http://cvcweb.ices.utexas.edu
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public data repository on the same page for images, traces,
3D meshes, and simulation files.
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