
Boundary Learning by Optimization with Topological Constraints

Viren Jain4,∗, Benjamin Bollmann4,∗, Mark Richardson4, Daniel R. Berger4,5, Moritz N. Helmstaedter3,
Kevin L. Briggman3, Winfried Denk3, Jared B. Bowden2, John M. Mendenhall2, Wickliffe C. Abraham6,

Kristen M. Harris2,†, Narayanan Kasthuri1, Ken J. Hayworth1, Richard Schalek1, Juan Carlos Tapia1,
Jeff W. Lichtman1 and H. Sebastian Seung4,5

1Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
2Center for Learning and Memory, Department of Neurobiology, University of Texas at Austin, TX, USA

3Department of Biomedical Optics, Max Planck Institute for Medical Research, Heidelberg, Germany
4Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

5Howard Hughes Medical Institute, Cambridge, MA, USA
6Dept. of Psychology and Brain Health and Repair Research Center, Univ. of Otago, Dunedin, New Zealand

Abstract

Recent studies have shown that machine learning can
improve the accuracy of detecting object boundaries in im-
ages. In the standard approach, a boundary detector is
trained by minimizing its pixel-level disagreement with hu-
man boundary tracings. This naive metric is problematic
because it is overly sensitive to boundary locations. This
problem is solved by metrics provided with the Berkeley
Segmentation Dataset, but these can be insensitive to topo-
logical differences, such as gaps in boundaries. Further-
more, the Berkeley metrics have not been useful as cost
functions for supervised learning. Using concepts from dig-
ital topology, we propose a new metric called the warping
error that tolerates disagreements over boundary location,
penalizes topological disagreements, and can be used di-
rectly as a cost function for learning boundary detection, in
a method that we call Boundary Learning by Optimization
with Topological Constraints (BLOTC). We trained bound-
ary detectors on electron microscopic images of neurons,
using both BLOTC and standard training. BLOTC pro-
duced substantially better performance on a 1.2 million
pixel test set, as measured by both the warping error and
the Rand index evaluated on segmentations generated from
the boundary labelings. We also find our approach yields
significantly better segmentation performance than either
gPb-OWT-UCM or multiscale normalized cut, as well as
Boosted Edge Learning trained directly on our data.

The accurate detection of object boundaries in images
has been a long-standing challenge for computer vision.
Rigorous research on this problem requires some method
for quantifying machine performance. One method is to
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compare machine-generated boundaries with human trac-
ings of boundaries on a set of images. The ideal metric for
machine-human disagreement should:

1. tolerate minor differences in boundary location,
2. penalize topological disagreements,
3. and serve as a convenient cost function for supervised

learning.

The first two properties are critical if the goal of boundary
detection is to generate image segmentations, i.e., divide an
image into regions corresponding to objects. A topological
error, like a gap in a boundary, can cause two regions to be-
come incorrectly merged, a drastic segmentation error. On
the other hand, minor differences in boundary location have
little effect on the shapes of regions in a segmentation. The
third property is important because the supervised learning
approach has become increasingly accepted as a means of
achieving more accurate boundary detection (see the top al-
gorithms in the Berkeley Boundary Detection Benchmark).

If the boundary detection algorithm is designed by hand,
the performance metric can be created as an afterthought.
But supervised learning starts from the metric, minimiz-
ing it to find a boundary detection algorithm. Therefore the
proper choice of a metric is even more crucial in supervised
learning than in conventional hand-designed approaches. If
the ultimate goal of learning is segmentation, it is especially
important to insist on a metric with properties (1) and (2).

Previous metrics have generally lacked one or more of
the above properties. For example, the naive metric is the
pixel error, the number of image pixels on which machine
and human boundary labelings disagree. This metric un-
duly penalizes minor disagreements over boundary loca-
tion. These ought to be considered inconsequential, since
they are ubiquitous when comparing the boundary labelings
provided by different humans.
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More sophisticated metrics are provided with the Berke-
ley Segmentation Dataset (BSDS), a collection of natu-
ral images along with human boundary tracings [1]. The
Berkeley metrics are based on a correspondence between
machine and human boundary pixels obtained by solving a
minimum cost bipartite assignment problem. Since matches
are allowed between pixels that are within some distance
cutoff, small disagreements over boundary locations are not
penalized. But the Berkeley metrics have a major defi-
ciency: they may fail to penalize a gap in the boundary
between two regions, and hence do not satisfy property (2)
above.

The pixel error and the Berkeley metrics also differ in
their convenience for supervised learning. Because pixel
error is so simple, it can easily serve as a cost function to be
minimized. In BSDS research, pixel error has been used to
train simple classifiers that combine hand-designed features
[1, 2], as well as boosted classifiers that combine large num-
bers of simple features [3]. Pixel error has also been used to
train convolutional networks to perform boundary detection
directly on raw images from biological microscopy, with no
use of hand-designed features [4].

In contrast, no one has succeeded in using the Berkeley
metrics to learn boundary detection, probably because they
are so complex. They have only been applied to evaluate the
performance of boundary detection algorithms after learn-
ing. To compensate during supervised learning for the pixel
error’s undue emphasis on boundary locations, researchers
have blurred the human boundaries [2] or averaged multiple
human labelings to yield an estimate of boundary probabil-
ities [3]. Neither of these simple fixes deals satisfactorily
with both issues (1) and (2) in the list above.

In summary, the pixel error is a convenient cost func-
tion for supervised learning, but is too sensitive to bound-
ary locations. The Berkeley metrics tolerate disagreements
in boundary location, but are too insensitive to topological
disagreements, and have not been convenient for use in su-
pervised learning.

In this paper, we use concepts from digital topology to
define the warping error, a new metric for boundary de-
tection that possesses all three properties in the list above.
Learning by minimizing warping error is called Bound-
ary Learning by Optimization with Topological Constraints
(BLOTC). We apply BLOTC to train a boundary detector
on human tracings of electron microscopic (EM) images
of neural tissue. The warping error of the BLOTC detec-
tor is significantly better than that of a “standard” detec-
tor, one trained by minimizing pixel error. Image segmen-
tations can be generated by finding connected components
of the thresholded boundary detector output. The BLOTC
segmentation is quantifiably superior to the standard seg-
mentation, confirming our intuition that properties (1) and
(2) are critical for a boundary detection metric if the ulti-
mate goal is segmentation.

We trained Boosted Edge Learning [3] on our dataset and
show that segmentations generated from this approach are

significantly inferior to those produced by either pixel er-
ror or BLOTC training of a convolutional network. We also
show that gPb-OWT-UCM [5] and multiscale normalized
cuts [6] produce far worse segmentations. This is not alto-
gether surprising since these algorithms were intended for
natural images rather than EM images, but it nevertheless
provides a useful comparison.

The Rand error has also been proposed as a metric of
segmentation performance that satisfies the desired proper-
ties listed previously [7, 8]. It will be defined below, and
compared with the warping error. We will use both error
metrics to quantify performance on the test set, although
only the warping error will be used for training. The rela-
tion of BLOTC to a recently proposed method of supervised
learning based on minimization of Rand error [9] will be ex-
plained later.

1. Existing metrics
Let B be a space of binary or black-and-white images of

a given size, andA a space of analog or gray scale images of
the same size. A binary image L ∈ B is termed a boundary
labeling of an image I ∈ A, if a “0” pixel in L indicates the
presence of a boundary between two objects in the image,
and a “1” pixel indicates the presence of an object. This is
opposite the usual convention, but it will be convenient later
when we use digital topology, as in that field the “1” pixels
are the foreground objects of the image. The disagreement
between two boundary labelings can be quantified using the
pixel error and the Berkeley metrics. The boundary label-
ings can also be converted into segmentations, which are
compared using the Rand error. All of these metrics are
explained below (see also Figure 1).

1.1. Pixel error
Let li denote the value of the boundary labeling L at im-

age location i. The pixel error of L with respect to another
binary labeling L∗ is the number of pixel locations at which
the two labelings disagree. This can also be written as the
squared Euclidean distance ‖L− L∗‖2, which is equivalent
to the Hamming distance since the labels are binary-valued.
The pixel error is appealing because of its simplicity, but
suffers from a serious defect. It is overly sensitive to minor
displacements in the location of a boundary that are ubiq-
uitous even when comparing one human boundary labeling
to another. These disagreements cause no qualitative dif-
ferences in the interpretation of the image, but can lead to
large quantitative differences in pixel error. Figure 1 illus-
trates that two boundary labelings with identical pixel error
relative to the true boundary labeling may yield segmenta-
tions of very different quality.

1.2. Berkeley metrics
To remove the sensitivity to minor differences in bound-

ary location, Martin et al. introduced another set of met-
rics, which are provided with the Berkeley Segmentation



Dataset [1]. They computed a correspondence between a
machine boundary labeling and a human boundary labeling
by solving a minimum cost bipartite assignment problem.
Boundary pixels in one labeling can be matched to bound-
ary pixels in the other, provided that the matching pixels are
within some distance cutoff of each other. Metrics based on
this correspondence tolerate small differences in boundary
localization, but still have limitations. First, they may be
insensitive to gaps in boundaries, which can lead to merg-
ers between two regions in a segmentation [8]. Second, it
is not clear how to efficiently optimize them for supervised
learning.

1.3. Rand error
The Rand index is a well-known measure of the similar-

ity between two data clusterings [10]. Recently, the Rand
index has been proposed as a measure of segmentation per-
formance, since a segmentation can be regarded as a clus-
tering of pixels [7]. The Rand index is defined as a measure
of agreement. Here we instead define the closely related
Rand error, which is a measure of disagreement.

More formally, define a segmentation as an integer-
valued labeling of an image. Each object in a segmenta-
tion consists of a set of pixels sharing a common label. The
Rand error is the frequency with which the two segmenta-
tions disagree over whether a pair of pixels belongs to same
or different objects:

R(S, T ) =
(
N

2

)−1∑
i6=j

|δ(Si, Sj)− δ(Ti, Tj)| ,

where the sum is over all pairs of distinct pixels. The func-
tion δ(Si, Sj) = 1 if pixels i and j belong to the same ob-
ject and 0 if they belong to different objects. The Rand error
equals 0 when the two segmentations agree completely, and
equals 1 when they disagree completely. These numerical
values are transposed for the more commonly used Rand
index, which is defined as 1−R(S, T ).

The Rand error evaluates whether the overall grouping
of pixels into separate objects is correct. Small differences
in the location of object boundaries will increase the Rand
error slightly, but the merging of two objects or the split-
ting of an object will tend to increase the Rand error by
a large amount. but will usually be less numerically sig-
nificant than, for example, the erroneous merging of two
regions.

2. Digital topology and the warping error
This section introduces a novel metric for comparing

boundary labelings, based on concepts from the field of dig-
ital topology. If L∗ can be transformed into L by a sequence
of pixel flips that each

1. preserve a set of desired topological properties
2. occur only at locations within a mask M ,
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Rand error 0.08 0.06 .75
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Figure 1. Comparison of different metrics on a 35×35 pixel image
from the training set used in Section 5. Within each segmentation
frame, pixels with the same color correspond to a single object.
Interpretation A has both topological and geometric differences
with the ground truth, whereas InterpretationB has geometric dis-
crepancies but no topological errors. The Rand error and warping
error show a large relative difference between interpretations B
and A, while the pixel error does not. The Berkeley F-measure
favors the topologically incorrect interpretation. Warping error of
interpretation A shows four topological errors: red pixel denotes
object deletion, green pixel denotes an object merger, yellow pixel
denotes an object split, and blue pixels denote creation of a hole.
The Berkeley F-Measure was converted to an error measure by
subtracting from 1, the value of perfect agreement for that mea-
sure. For evaluation of the Berkeley F-measure, a boundary la-
beling was computed by completely thinning a binary flip of the
in/out map (in accordance with procedures defined in the bench-
mark code provided with [1]).

then we will say L is a warping of L∗, or LCL∗. The first
condition constrains L and L∗ to be topologically equiva-
lent. The second condition can be used to constrain L to
be geometrically similar to L∗. Both conditions will be ex-
plained in more detail below.

Now consider the pixel error of T relative to warpings
of L∗. The warping error between some candidate labeling
T and a reference labeling L∗ is the Hamming distance (or
equivalently squared Euclidean distance) between L∗ and
the “best warping” of L∗ onto T :

D(T ||L∗) = min
LCL∗

‖T − L‖2 (1)

In Figure 1 we illustrate the warping error.



2.1. Topological constraints

To impose topological constraints on the warping, we
use concepts from digital topology, a field that extends the
concepts of continuous-space topology to digital images.
One of the most fundamental principles of this field is that
complementary definitions of adjacency must be used for
foreground (“1”) and background (“0”) pixels, so that a dig-
ital analog of the Jordan Curve Theorem holds [11]. We
use the 4-adjacency for foreground and the 8-adjacency for
background, and calculate connected components based on
these adjacencies.

A major practical goal of digital topology is to identify
methods of altering the geometry of objects within a digi-
tal image without altering any topological properties of the
image. A simple point is defined as a location in a binary
image at which the pixel can be flipped to its complemen-
tary value without changing any topological properties of
the image. These properties include, for example, the num-
ber of κ-connected components of the foreground and the
number of κ̄-connected components of the background.

Bertrand has given conditions for a simple point based
on his notion of topological number. Let (κ, κ̄) be a com-
plementary pair of adjacencies. The topological number
Tκ(p, L) is the number of foreground connected compo-
nents in the neighborhood of p (i.e., the 3 × 3 patch of L
centered at p) under κ-adjacency. The topological number
Tκ(p, L̄) is the number of background connected compo-
nents in the neighborhood of p under κ-adjacency. A point p
is defined as κ-simple if and only if Tκ(p, L) = Tκ(p, L) =
1. [12]. Note that the computation of the topological num-
bers is local, based only on the neighborhood of the point.
Therefore whether a point is simple can be checked rapidly.

Although flipping a single simple point is guaranteed to
preserve topology, it is not true that simultaneously flip-
ping an arbitrary set of multiple simple points will preserve
topology. Hence, many algorithms that deform digital im-
ages by altering simple points instead perform a sequence of
flips, where any particular flip is made at a point that is sim-
ple relative to the current state of the image. Since all flips
preserve topology, such a sequence of flips is a topology-
preserving deformation of the original image (sometimes
called a homotopic deformation). The converse has also
been proven: two images that are topologically equiva-
lent in the sense of sharing isomorphic adjacency trees can
always be transformed into each other by a sequence of
changes in the values of simple pixels [13].

In short, by definition flipping a “simple” point is a
topology-preserving operation and flipping a “non-simple”
point is not topology-preserving. Non-simple points can
be classified by the nature of the topological change they
would cause by being flipped (see the supplementary mate-
rial for mathematical details of this classification, and Fig-
ure 1 for an example of this classification). The possi-
ble topological changes are splitting, merging, hole addi-
tion/deletion, or object addition/deletion. We may wish to

Algorithm 1 Descent algorithm for warping a binary image
L∗ to an analog image T , under geometric constraints set
by the binary image M .
warp(L∗ ∈ B,T ∈ A,M ∈ B)
L := L∗

do
S := simple(L) ∩M
i := argmax j∈S |tj − lj | , breaking ties randomly
if |ti − li| > 0.5

li := 1− li
else

return L
end

allow some of these types of changes, and therefore flipping
of some types of non-simple pixels.

We will write simple(L) to denote the set of simple
points of L, and topo(L) to denote the set of simple and
non-simple points of L that preserve some desired set of
topological properties.

2.2. Geometric constraints
There are many ways to define the mask, depending on

the exact nature of the desired geometric constraints. In our
implementation below, we choose M to be the set of all
pixels within Euclidean distance 5 from the background of
L∗. This allows the foreground of L to expand arbitrarily,
as long as topology is preserved. But the foreground can
shrink by only a limited amount. Note that basing M on L∗
makes warping an asymmetric relation.

2.3. Descent algorithm for warping
We do not know of an efficient algorithm for finding the

global minimum in Eq. (1), and indeed this is likely to be an
NP-hard problem. However, there is a very simple descent
algorithm for finding local minima. During warping, we are
allowed to flip simple points ofL that lie inside the maskM ,
i.e., points in the set simple(L)∩M . Flipping any such pixel
j of L satisfying |tj − lj | > 0.5 produces a new warping
with smaller error. The descent algorithm greedily picks the
pixel for which this error reduction is the largest, breaking
ties randomly.

Since ‖T − L‖2 is decreasing, the algorithm is guaran-
teed to converge to a local minimum of the warping error.
How problematic is the lack of an efficient algorithm for
finding a global minimum? We do not think that it is a
problem in practice. The warpings found by our descent
algorithm look reasonable to the eye. In spite of the random
choice of flipped pixels, the results are highly reproducible
in practice. In the dataset studied later on, the outcomes
of dozens of runs of warping on a 65,536 pixel image con-
tained less than ten pixel differences, or less than 0.01% of
the value of the warping error. We note that the Berkeley
metrics are not deterministic either, due to the use of ran-
dom nodes and edges in the graph for the correspondence



problem. Furthermore, a linear time approximate algorithm
is used to solve the correspondence problem, so that the
global minimum is not found in this case either.

We also note that warping in two and higher dimen-
sions is fundamentally more difficult than in one dimension,
for which there are efficient algorithms like dynamic time
warping or Viterbi alignment based on dynamic program-
ming. Nevertheless, it may be possible to improve upon our
descent algorithm. For example, previous work on homo-
topic thinning algorithms may suggest certain strategies for
finding better or more consistent minima, such as using the
distance transform to determine flipping order [14].

2.4. Warping error versus Rand error

At first glance, it may seem that the warping error mea-
sures only boundary detection performance. But we would
like to argue that it is also a good measure of segmenta-
tion performance. This is because digital topology tells us
how any single pixel affects the global topology of an im-
age. Let L be a best warping of L∗ onto T . Any pixel in
the symmetric difference set L∆T = L\T ∪ T\L repre-
sents a topological error in T because flipping its value in
L (which is topologically equivalent to the ground truth L∗)
would cause a topological change. Thus the warping error
is an upper bound on the number of topologically-relevant
boundary labeling errors in T (if a geometric mask is used,
then the warping error also includes labeling errors of a ge-
ometric nature). Therefore, if segmentations are generated
from T and L∗ by finding their connected components, then
the warping error should be a reasonable measure of the
topological disagreements between the segmentations.

The Rand error is becoming more popular as a metric
of segmentation performance [7], and can be used as a cost
function for gradient learning of image segmentation [9].
The Rand error can be used to compare segmentations in
which regions are noncontiguous clusters of pixels. Such
segmentations are not equivalent to boundary labelings, so
the warping error cannot be applied. In many applications,
such as the one studied below, this is not a significant limi-
tation.

The warping error can be distinguished from the Rand
error in other respects. The warping error can penalize all
kinds of topological errors, including the presence of holes
and handles, but the Rand error penalizes only connectiv-
ity errors. In certain medical imaging situations, control
of such aspects of topology is especially important [15].
The Rand error mildly penalizes shifts in boundary location,
while the warping error ignores them altogether. The warp-
ing error weights a topological error by the number of pixels
involved in the error itself, while the Rand error weights a
split or merger by the number of pixels in the objects asso-
ciated with the errors.

Algorithm 2 Stochastic online gradient learning. The learn-
ing rate parameter η is small and positive.
gradient(I ∈ A,L ∈ B,~w,k)
for iter = 1 to k

i =random location in random image
~w := ~w − η∇~wd(fi(~w), li)

end
return ~w

3. Supervised learning
3.1. Learning with pixel error

A popular way of applying supervised learning to bound-
ary detection is to find an image patch classifier, a function
that maps an image patch to an estimate of the probabil-
ity that the central pixel is a boundary. The classifier out-
put will be called the boundary map and written as FI(~w),
where I is the image, and ~w specifies the adjustable parame-
ters of the classifier. The analog values in the boundary map
can be thresholded at θ to produce a binary boundary label-
ingH(FI(~w)−θ), where the image-valued quantityH(M)
represents the Heaviside step function applied to each pixel
location in a map M .

Supervised learning could be formulated as the mini-
mization of the pixel error ‖H(FI(~w)− θ)− L∗‖2 with re-
spect to the classifier parameters ~w, where L∗ is a human
boundary labeling of the same image. However, it is of-
ten easier to optimize a smooth cost function that depends
on the real-valued output of the classifier. Minimizing the
squared error ‖FI(~w)− L∗‖2 serves as an approximation to
optimizing the binary classification error. Since the squared
error cost function depends smoothly on the analog output
of the classifier, gradient descent can be applied to find a
local minimum. A “batch” implementation computes the
gradient of the cost function for the whole image or set of
images. An “online” implementation computes the gradient
of the cost function for a single pixel. Since the pixel is cho-
sen at random, the average of the online gradient is equal to
the batch gradient, which means that online learning is a
form of stochastic gradient descent.

3.2. Learning with warping error

The warping error is superior to the pixel error, if the goal
of boundary detection is segmentation. Therefore it would
make sense to base supervised learning on the warping er-
ror, formulating it as the optimization of D(H(FI(~w) −
θ)||L∗) with respect to ~w, which is the dual optimization:

min
~w

min
LCL∗

‖H(FI(~w)− θ)− L‖2 .

We call this method Boundary Learning by Optimization
with Topological Constraints, or BLOTC. Note that stan-
dard training is the case where no warping of L∗ is allowed,
i.e., the geometric constraint becomes completely tight. In
order to make this cost function easier to optimize, we again



Algorithm 3 Boundary Learning by Optimization with
Topological Constraints (BLOTC)
blotc(I ∈ A,L∗ ∈ B,M ∈ B,k1,k2)
L := L∗

~w :=random initialization
~w :=gradient(L,~w,k1)
repeat

L :=warp(L,FI(~w),M )
~w :=gradient(I ,L,~w,k2)

until convergence
return ~w

use a smooth approximation of the binary error. One possi-
bility is to use the squared error defined above:

min
~w

min
LCL∗

||FI(~w)− L||2,

For the experiments described in Section 4, we used the
closely related square-square loss (defined in the supple-
mentary material). BLOTC is carried out as described in
Algorithm 3, by alternating between gradient descent for ~w
(Algorithm 2) and descent for L (Algorithm 1).

4. Segmentation of Electron Microscopic Im-
ages of Brain Tissue

Recent advances in electron microscopy (EM) have en-
abled the automated collection of nanoscale images of brain
tissue [16, 17]. The resulting image datasets have renewed
interest in automated computer algorithms for analyzing
EM images [4, 18, 19]. From the neuroscience perspective,
development of such algorithms is important for the goal of
finding connectomes, complete connectivity maps of a brain
or piece of brain [20, 21, 22]. To find connectomes, two im-
age analysis problems must be solved. First, each synapse
must be identified in the images. Second, the “wires” of the
brain, its axons and dendrites, must be traced through the
images. If both problems are solved, then it would be possi-
ble to trace the wires running from every synapse to the cell
bodies of its parent neurons, thereby identifying all pairs of
neurons connected by synapses.

Serial sections of rat hippocampus were obtained us-
ing the Automatic Tape Collecting Lathe Ultra-Microtome
(ATLUM) [16]. Sections were 29.8 nm thick, and images
of each section were taken at a resolution of roughly 4
nm/pixel using a JEOL scanning electron microscope. The
images were downsampled to approximately 16nm/pixel for
analysis. Our goal in this paper was to segment the images
into regions corresponding to the cross sections of distinct
neurons. This is a first step toward full 3d reconstruction of
neuron shapes, but in this paper we only address 2d compu-
tations. A level set approach has recently been pursued for
segmentation of similar imagery [23].

The segmentation task is especially challenging because
the neurons contain many intracellular organelles such as
mitochondria, and this internal clutter can be distracting.

ATLUM Image

BLOTC CN Segm.Human Segmentation

Human Labeling CN: BLOTC Training

CN: Standard Training gPb

Standard CN Segm.

Boosted Edge Learning

Figure 2. Visual comparison of output from a convolutional
nework (CN) trained in the standard way and a convolutional net-
work trained with BLOTC, on an image from the test set. Segmen-
tations of CN output were generated using connected components
at a threshold chosen optimally for each method based on quan-
tifications in Figures 3 and 4. The BLOTC CN segmentation has a
substantially smaller number of split and merger errors compared
to the CN trained in the standard way. Boundary labelings from
gPb [8] and Boosted Edge Learning (BEL) [3] are also displayed;
additional comparisons are shown in the supplementarymaterial.

Two kinds of boundaries are visible in the images: exter-
nal boundaries between neurites, and internal boundaries of
the intracellular organelles. There is an obvious question
concerning how the boundary detector should be trained.
We definitely want the external boundaries of neurons to be
detected. But do we want the internal boundaries to be de-
tected?

It turns out that this decision can be left up to the com-
puter, if BLOTC training is used. We implemented a ver-
sion of BLOTC in which some topological changes were
allowed in the warping described in Section 2.1. In addi-
tion to flipping simple pixels, the warping was allowed to
flip certain types of non-simple pixels. For example, the
warping was allowed to create holes within objects, thereby
not penalizing the computer for detecting internal bound-
aries even if they were not traced by the human. Additional
details are available in the supplementary material.

A 256×256 bounding box from a set of 100 aligned im-
ages was cropped from the dataset to form a 256×256×100
image stack. Each image in the stack was manually traced
by a human using the ITK-SNAP software package. All
external boundaries of neurons were traced in each image,
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Figure 3. Comparison of standard and BLOTC learning using the
warping error metric on a 5.2 megapixel training set and a 1.2
megapixel testing set. The left plot shows warping error when
classifier output is thresholded at 0.5, demonstrating a large rela-
tive reduction in error from standard to BLOTC training. The right
plot shows the precision-recall on outside voxel classification ac-
curacy, which compensates for the class-imbalance. The warping
error for all methods is provided in the supplementary material.

but the internal boundaries were mostly neglected. Figure
2 shows an example of human tracing. From this dataset,
80 images were used as a 5.2 megapixel training set and 20
images were set aside as a 1.2 megapixel testing set.

For our image patch classifier, we used a convolutional
network. It has already been shown that convolutional net-
works provide state-of-the-art performance at boundary de-
tection in EM images [4], when trained by standard meth-
ods; in the supplementary material, we describe details of
this classifier.. However, it is important to note that BLOTC
is not limited to convolutional networks, but can be used to
train any kind of classifier.

We trained two convolutional networks with identical
architectures containing 6 hidden layers, 24 feature maps
in each hidden layer, and full connectivity between feature
maps in adjacent layers. Each individual filter was 5×5 pix-
els, but the multiple-layers yield an effective field of view
of the classifier of 28×28 pixels. The standard network was
trained for 1,000,000 updates using the traditional optimiza-
tion with the labels fixed. The BLOTC network was initial-
ized with the weights from a standard network after 500,000
gradient updates and then further trained for 500,000 addi-
tional updates using BLOTC optimization. Each network
was trained in roughly 18 hours, using a layer-wise proce-
dure that iteratively adds hidden layers to the network ar-
chitecture. The training used a fast shared-memory GPU
implementation that provides between a 50-100× increase
in training speed as compared to CPU implementations.

The results of training are shown in Figure 2. Both
BLOTC and standard networks do a good job of detecting
boundaries between neurons, and ignore most intracellular
structures such as vesicles. The BLOTC network strongly
detects some mitochondrial boundaries that were not in the
human tracing, presumably because it was not penalized
for doing so. The standard network cannot manage to ig-
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Figure 4. Generalization performance using the Rand error and
precision-recall of correctly classified connected pairs of pixels
on a 1.2 megapixel testing set. The relative reduction in Rand
error between standard and BLOTC results is large (40%). The
precision-recall curve compensates for the class imbalance in pixel
connectivity (in the ground truth, most pixels are disconnected
from one another). gPb-OWT-UCM corresponds to segmentations
generated by an oriented water transform on gPb contour detec-
tor output, followed by conversion into a hierarchical region tree
[8]. Multiscale Ncut corresponds to multiscale normalized cut [6].
This method requires as input the number of objects in an image;
we provided the average number of objects in a training set im-
age. Boosted Edge Learning (BEL) was learned using the same
5.2 megapixel training set as the convolutional networks, with a
30 × 30 field of view and identical classifier parameters to those
used in [3], with code provided by the authors. Several methods
for generating segmentations from BEL output were tested; a wa-
tershed approach worked best. Baseline corresponds to a segmen-
tation in which all pixels are disconnected from one another.

nore mitochondrial boundaries, even though it was trained
to ignore them. This is presumably because mitochondrial
boundaries often resemble external boundaries, at least lo-
cally. The BLOTC network produces more binary output,
as if it were more confident.

Figure 3 shows that the warping error of the BLOTC
network is much lower than that of the standard network.
The value of the error is low (1% or less), which is pri-
marily a consequence of the fact that boundary pixels are
relatively rare; thus it is helpful to view performance using
the precision-recall curves shown in Fig. 3.

Figure 4 demonstrates the superiority of the BLOTC net-
work using the Rand error. The value of the Rand error for
all methods is low (less than 10%). As before, this is be-
cause the class distribution is skewed. In the ground truth,
most pairs of pixels belong to different objects. Therefore
the trivial segmentation in which every pixel belongs to a
different object has a Rand error of less than 10%. This sets
the baseline for performance in Figure 4. We also bench-
marked several leading competitors: multiscale normalized
cuts [6], gPb-OWT-UCM [8], and Boosted Edge Learning
(see Supplementary Information for details regarding use of
these methods). Their performance was much worse than
that of our convolutional networks, and only barely better
than the baseline set by the trivial segmentation. Of course,



it is reasonable to assume that one reason gPb-OWT-UCM
and multiscale normalized cuts yield inferior results is that
they were designed for natural images, while the convolu-
tional networks have been optimized for EM images. Yet
Boosted Edge Learning was also trained on the EM images,
and its performance is still closer to that of gPb-OWT-UCM
than our networks.

5. Discussion
A number of recent papers have introduced segmenta-

tion algorithms that employ topological constraints within
complex inference optimizations. Many of these methods
are fundamentally interactive and require human interaction
(such as entering seed points [24, 25]), or make topological
assumptions about a test image [26].

In contrast, we use topology to define the warping er-
ror metric and introduce a learning algorithm, BLOTC,
that optimizes this metric. It is worth comparing our ap-
proach to Maximin Affinity Learning of Image Segmenta-
tion (MALIS), which is based on minimizing the Rand er-
ror [9]. The two approaches are similar, in the sense that
the warping and Rand errors are both metrics of segmen-
tation performance that satisfy the three properties listed at
the beginning of this paper. Section 2.4 explained the dif-
ferences between the warping and Rand errors, which may
determine whether BLOTC or MALIS is preferable in any
given application.

Our empirical results provide strong evidence that in the
challenging domain of EM images, the accuracy of seg-
mentations produced from a boundary detector learned with
BLOTC can dramatically exceed other state of the art meth-
ods. Although the results presented here are for 2d segmen-
tation, the method can be applied to fully 3d segmentation
using 3d patch classifiers [4] and the 3d digital topology
formalism [12]1.

There are several important directions for future work.
Convolutional networks and BLOTC are both domain-
general methods, and thus it will be interesting to investi-
gate natural image segmentation. The alternating optimiza-
tion we employ in BLOTC is simple and apparently effec-
tive, but a truly joint optimization of some kind may be su-
perior. Preliminary work suggests that BLOTC can be used
to learn from sparse labels and perform interactive segmen-
tation. Finally, it should also be possible to extend BLOTC
to boundary detectors that classify the edges of an affinity
graph rather than pixels [28, 29, 9].
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1. Details of Experimental Procedures
In this section we provide additional details of the ex-

perimental comparisons that were performed in Section 4
of the main text. We also show an extended presentation of
the warping error results shown in the main text. In partic-
ular Figure 1 shows the warping error on the test set of the
convolutional network methods along with BEL and gPb-
OWT-UCM. For this comparison, a threshold of gPb-OWT-
UCM and BEL was chosen according to the threshold that
achieved lowest Rand error also on the test set (shown in
Figure 4 of the main text). These results are consistent with
the relative ordering of algorithms that the Rand index pro-
duced, but the relative reduction in error between the meth-
ods is larger (for example, the gPb-OWT-UCM method has
almost ten times as much warping error as the highest per-
former, BLOTC CN).

Figure 2 also shows a visual depiction of the segmenta-
tion and boundary maps of all methods that are discussed.

1.1. Multiscale Normalized Cut
Multiscale normalized cut was performed using pub-

licly available code provided by the authors of [1]:
http://www.seas.upenn.edu/~timothee/software/
ncut_multiscale/ncut_multiscale.html

This technique requires that the number of objects in the
image be specified by the user. We are interested in com-
pletely automated segmentation in which such information
would not usually be available. Therefore we provided to
the code the average number of objects in a training set im-
age. However, we also tried providing the code with the true
number of objects in each test set image. Then the results
∗These authors made comparable contributions to this paper.
†Supported by NIH/NINDS R37 NS021184 and NIH/NIBIB EB002170.

of “Multiscale Ncut” shown in Figure 4 of the main text im-
prove slightly, but remain worse than all other techniques.

1.2. gPb-OWT-UCM
The gPb-OWT-UCM algorithm (global probabil-

ity of boundary followed by the oriented watershed
transform and a hierarchical region construction by
ultrametric contour maps) was performed using pub-
licly available code provided by the authors of [2, 3]:
http://www.eecs.berkeley.edu/Research/Projects/
CS/vision/grouping/gpb/grouping.zip

The following is a summary of the algorithm imple-
mented by the code, as described in [2]. First, the gPb
contour detector was applied directly to the raw EM im-
ages, producing an 8-channel oriented localized probability
of boundary map, as well as a single-channel thinned con-
tour image which is the result shown in Figure 2 of the main
text. The 8-channel boundary map was then converted to an
oversegmentation using the oriented watershed transform
(OWT), and then an ultrametric contour map (UCM) ac-
cording to the dissimilarity between regions as determined
by mean probability of boundary value. Finally, the ultra-
metric contour map was partitioned using connected com-
ponents at various thresholds (where the x-axis in Figure 4
for this technique corresponds a segmentation of the UCM
thresholded at a value of 255 ∗ (1 − x) , to compensate for
the range of the UCM, and then the binary boundary map is
converted to an in/out map prior to connected components
by flipping the binary values).

1.3. Boosted Edge Learning
The Boosted Edge Learning algorithm was applied to our

training set of EM images using publicly available code pro-
vided by the authors of [4]: http://www.loni.ucla.edu/
~ztu/Download.htm
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Figure 1. Warping error on test set.

A probabilistic boosting tree of depth 10 was used with
120 weak classifiers in each AdaBoost node. A patch size
of 30 was used, which is a slightly larger than the field of
view of the convolutional networks that were used. These
were the default parameters provided in the code.

After training was complete, we proceeded to quantify
segmentation performance on the test set of images. Here
we had to choose our own method for generating segmen-
tations from BEL output. The simple procedure of find-
ing connected components of the thresholded BEL output
(which was used for the CNs and gPb-OWT-UCM) pro-
duced a poor Rand error, as did the watershed transform
on the negative of the BEL output. Therefore we ap-
plied the watershed transform only after using MATLAB’s
imimposemin command to damp local maxima of the BEL
output, constraining them to occur where the BEL output
was greater than a threshold. The watershed transform was
performed with 8 connectivity (4 connectivity gave worse
results).

1.4. Convolutional Networks

A convolutional network is an alternating sequence of
linear filtering and nonlinear transformation operations.
The input and output layers include one or more images,
while intermediate layers contain “hidden” units with im-
ages called feature maps that are the internal computations
of the algorithm. The activity of feature map a in layer k is
given by

Ik,a = f

(∑
b

wk,ab ⊗ Ik−1,b − θk,a

)
(1)

where Ik−1,b are feature maps that provide input to Ik,a, and
⊗ denotes the convolution operation. The function f is the
sigmoid f(x) = 1/ (1 + e−x) and θk,a is a bias parameter.

Gradient learning of this architecture can be performed with
an version of the backpropagation algorithm [5, 6].

Our experiments were performed on the gray scale EM
images and hence the networks contain a single image in
the input layer. It is straightforward to extend this approach
to color images by assuming an input layer with multiple
images (e.g., RGB color channels). For numerical reasons,
it is preferable to use input and target values in the range
of 0 to 1, and hence the 8-bit integer intensity values of
the dataset (values from 0 to 255) were normalized to lie
between 0 and 1.

As our loss function during optimization of the convolu-
tional network, we used the square-square loss

l(x, x̂) = xmax(0, 1− x̂−m)2 + (1−x) max(0, x̂−m)2

with m = 0.2, rather than the squared loss (x− x̂)2. This
loss function is a better approximation of the true binary
classification error we seek to optimize. This is particularly
important in the scenario in which the classifier has pre-
dicted the correct class of most examples (based on thresh-
olding the analog output), and there are relatively few re-
maining incorrectly classified examples. In this case, the
small amount of remaining error in the squared loss related
to pushing values to 0 or 1 may dominate the error asso-
ciated with incorrectly classified examples. The square-
square loss allows the training to “give up” when the classi-
fier output is correct by a sufficient margin. This gives the
classifier more flexibility to achieve higher binary classifi-
cation accuracy.

Batch learning is inefficient in this context, as the train-
ing set has millions of pixels and it is not practical to com-
pute the gradient with respect to the entire training set for
each update, particularly when many hundreds of thou-
sands of updates may be required in order to reach conver-
gence. Therefore we adapted stochastic online learning to
this problem. We employed a minibatch implementation in
which a randomly chosen 14×14 patch of the network out-
put was used to compute each gradient update. A localized
patch shares computation in a convolutional network and is
therefore especially efficient to compute.

Segmentations were generated by thresholding the ana-
log output of the convolutional network and then perform-
ing connected components with the same κ = 4 and κ̄ = 8
adjacency using in warping.

2. Classification of non-simple points
As discussed in Section 4 of the main text, in our experi-

ments with BLOTC learning we allowed the warping to flip
certain non-simple points in addition to any simple point. In
particular, the warping was allowed to create holes within
objects, therefore not penalizing the computer for detecting
internal boundaries even if they were not traced by the hu-
man. The warping was also allowed to create new objects,
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Figure 2. Comparison of boundary detector outputs and corresponding segmentations on an image from the test set. Both Standard and
BLOTC CN segmentations were generated by connected components on the respective boundary detector outputs at threshold 0.75. For
gPb and BEL, segmentations were generated at the optimal threshold according to the Rand error. Multiscale NCut directly generates a
segmentation and thus no threshold was used (in the results shown above, the true number of objects in this specific test image was provided
as input to to the multiscale normalized cut routine).

in case certain objects in the image were neglected in the
human tracing (in practice this occured extremely rarely).

In order to allow only certain topological changes, it
is necessary to be able to classify the type of topological
change flipping a particular non-simple point will cause.
By “change topology” we mean alter the number of com-
ponents, or cavities. We would thus like to know which
topological quantity is affected by flipping a particular non-
simple point. In this supplementary section we discuss how
non-simple points can be classified rigorously using addi-
tional concepts from the field of digital topology.

2.1. Identifying addition and deletion of objects us-
ing topological numbers

Certain cases can be identified based on topological
number alone (see Section 2.1 of the main text for a review
of topological numbers). Let (κ, κ) be some complemen-
tary adjacency relation in either a 2d or 3d space.

Theorem 2.1. Topological number characterization of ob-
ject deletion. Suppose q is an element of the foreground L.
Then flipping q will result in a κ-component deletion if and
only if Tκ(q, L) = 0.

Proof. The proof (given in [7]) is simple: suppose that q is
flipped, then a connected component of L is removed if and
only if q is an isolated point, in which case Tκ(q, L) = 0.
Conversely suppose Tκ(q, L) = 0, then q must be an iso-
lated point with respect to the foreground. Therefore flip-
ping q results in an object deletion.

Note that object deletion is only one way to decrease the
number of foreground connected components. The merging
of two existing components is the other way.

A similar statement can be offered for object addition:

Theorem 2.2. Topological number characterization of ob-
ject addition. Suppose q is an element of the background L.
Then flipping q will result in a κ-component addition if and
only if Tκ(q, L) = 0.

Proof. Suppose that q is flipped, then a connected compo-
nent L is added if and only if q is an isolated point, in which
case Tκ(q, L) = 0. Conversely suppose Tκ(q, L) = 0, then
q must be an isolated point with respect to the foreground.
Therefore flipping q results in an object addition. Again, we
note that object addition is only one way to add to the num-
ber of components. Splitting an existing object into two is
the other.

Topological numbers can also be used to identify the cre-
ation and deletion of cavities, using a similar criteria based
on the “background” topological number. Recall that the
background is the unique infinite κ-connected component
of L, and by definition any other κ-connected component
of L is called a cavity in L.

Topological number characterization of cavity deletion.
Suppose q is an element of the background L. Then flipping
q will result in a κ-component (cavity) deletion if and only
if Tκ(q, L) = 0.

Proof. Suppose that q is flipped, then a connected compo-
nent of L is removed if and only if q is an isolated back-
ground point, in which case Tκ(q, L)=0. Conversely sup-
pose Tκ(q, L) = 0, then q must be an isolated background
point. Therefore flipping q results in deletion of a cav-
ity.



Theorem 2.3. Topological number characterization of cav-
ity addition. Suppose q is an element of the foreground L.
Then flipping q will result in a κ-component (cavity) addi-
tion if and only if Tκ(q, L) = 0.

Proof. Suppose that q is flipped, then a connected compo-
nent in L is added if and only if q is an isolated background
point, in which case Tκ(q, L) = 0. Conversely suppose
Tκ(q, L) = 0, then q must be an isolated point with respect
to the background. Therefore flipping q results in the cre-
ation of cavity.

As in the case of foreground components, dele-
tion/addition of cavities by flipping isolated background
points is not the only way in which the number of back-
ground components can be changed. A cavity can be
merged (with other cavities or the infinite background com-
ponent) and split into two cavities by a single flip of some
pixel q. However in such cases it will not be true that
Tκ(q, L) = 0.

We note that if Tκ(q, L) = 0 then it follows Tκ(q, L) =
1 and vice versa. This is because an isolated foreground
(background) point is clearly surrounded by a background
(foreground), which under normal adjacency relations for
either κ or κ will be connected as a single component
within such a neighborhood itself. Finally we recall that
if Tκ(q, L) = Tκ(q, L) = 1 the point is simple and thus
causes no topological change when altered. Therefore, we
have a characterization for all points for which Tκ(q, L) ∈
{0, 1} and Tκ(q, L) ∈ {0, 1}.

2.2. Identifying splits, mergers, and hole addi-
tion/deletion using extended topological num-
bers

Topological numbers as originally defined are insuf-
ficient to characterize the precise nature of topological
changes caused by flipping non-simple points for which
Tκ(q, L) > 1 or Tκ(q, L) > 1 . For example, flipping a
pixel q from background to foreground when Tκ(q, L) > 1
clearly implies a topological change since q is non-simple;
however, the nature of this change depends on non-local
properties that are not captured by the local neighborhood
from which Tκ(q, L) is computed. We need access to global
connectivity information that would enable us to distinguish
between, for example, merging two objects versus creating
a hole. Global connectivity is well defined over the image,
however the binary image itself does not represent such in-
formation directly. Hence, such classifications require addi-
tional measures beyond topological numbers that take into
account this global information [5].
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