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SUMMARY

The arrival of an action potential at a synapse triggers
neurotransmitter release with a limited probability, pr.
Although pr is a fundamental parameter in defining
synaptic efficacy, it is not uniform across all synap-
ses, and the mechanisms by which a given synapse
sets its basal release probability are unknown. By
measuring pr at single presynaptic terminals in con-
nected pairs of hippocampal neurons, we show that
neighboring synapses on the same dendritic branch
have very similar release probabilities, and pr is neg-
atively correlated with the number of synapses on the
branch. Increasing dendritic depolarization elicits
a homeostatic decrease in pr, and equalizing activity
in the dendrite significantly reduces its variability. Our
results indicate that local dendritic activity is the
major determinant of basal release probability, and
we suggest that this feedback regulation might be
required to maintain synapses in their operational
range.

INTRODUCTION

Release probability (pr) is the likelihood of vesicle fusion and

transmitter release occurring at a presynaptic terminal in

response to an action potential (Del Castillo and Katz, 1954).

This fundamental parameter is critical in determining the strength

of a synapse as well as its dynamic adaptation to input, and, as

such, it shapes the nature of neuron-neuron communication

(Maass and Zador, 1999). Studies from a variety of systems indi-

cate that release probability at individual synapses is unique

(Atwood and Bittner, 1971; Frank, 1973; Cooper et al., 1996; Do-

brunz and Stevens, 1997). However, the factors contributing to

the setting of pr at each synaptic terminal still remain to be deter-

mined. Extensive experimental evidence from work on neuro-

muscular junction and invertebrate and vertebrate central

synapses has suggested that release probability along single

axons depends on the identity of the postsynaptic target (Ben-

nett et al., 1986; Robitaille and Tremblay, 1987; Katz et al.,

1993; Muller and Nicholls, 1974; Koerber and Mendell, 1991;

Mennerick and Zorumski, 1995; Davis, 1995; Reyes et al.,
1998; Koester and Johnston, 2005). However, this simple rela-

tionship is not universal; for example, inputs on the same target

can exhibit considerable variability (Jack et al., 1981; Redman

and Walmsley, 1983; Walmsley et al., 1988; Redman, 1990;

Hessler et al., 1993; Dobrunz and Stevens, 1997; Huang and

Stevens, 1997), and in the limiting case of autaptic cell cultures,

release probability can be highly nonuniform (Rosenmund et al.,

1993; Murthy et al., 1997; Slutsky et al., 2004; Granseth et al.,

2006). Thus, release sites from a single axon can have variable

pr, even when making contact on the same postsynaptic neuron.

Aside from signaling mechanisms specific to the identity of the

postsynaptic cell, there must be other factors contributing to

the setting of release probability. At present, it is not known

what these factors might be. Moreover, the potential functional

relevance of pr nonuniformity in the connection between two

cells remains to be established.

In the present study, we combine the use of simple networks

of dissociated hippocampal cultured neurons with fluorescence

imaging, electrophysiological recordings, and ultrastructural

analysis to establish the cellular principles used by synapses

to define their basal release probability. We find that, despite

high overall variability, synapses from single axons contacting

one dendritic tree have highly correlated release probabilities

when they converge on the same branch of the dendrite. Further-

more, pr homeostatically adapts both to the number of synapses

in the branch and to selective increases in postsynaptic activity.

This organization of pr can be disrupted not only by global but

also by local activity manipulations. Our findings suggest that

pr is set according to the local level of dendritic depolarization.

RESULTS

Release Probability Is Dendritically Segregated
Using sparse cultured networks that permit a detailed character-

ization of individual synapses in an identified connection, we first

examined pr across the dendritic trees of single neurons. Cells

were filled with Alexa dyes, and synaptic contact points were

identified using FM4-64. To measure pr at individual synapses,

we evoked synaptic activity with field stimulation and imaged

fluorescence loss due to vesicle exocytosis from the FM-dye-

labeled synapses, where the rate of fluorescence decay is pro-

portional to pr (Zakharenko et al., 2001) (Figure S1 available

online). Consistent with previous reports (Murthy et al., 1997;

Slutsky et al., 2004), pr had a broad and skewed distribution
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Figure 1. Variability of Release Probability
Release probability was measured by labeling synapses with FM dye and monitoring destaining rates upon action potential stimulation, delivered by field

stimulation (A) or during single (B) and paired (E) whole-cell recordings.

(A) (Left) Dendrite (orange) with FM4-64-labeled synapses (red). (Right) Destaining curve fits with 95% confidence interval (shaded areas) for the numbered

synapses show a wide range of release probabilities for synapses in the same dendritic branch. Scale bar, 5 mm.

(B) (Left) Axon (blue) with several synapses (red) and respective destaining curve fits (right) also show very different prs for synapses along single axons. Scale bar,

5 mm.

(C) Summary data of similarity comparisons for all synapses in a branch of dendrite or axon, showing that the mean pr difference is not significantly different from

the average pr difference expected by chance (1.13 SDs, Wilcoxon rank sum test for axon p = 0.4241, dendrite p = 0.2079).

(D) Epifluorescence image of axon (blue) making multiple synaptic contacts (red, FM4-64) with a postsynaptic cell (orange). (Inset) Representative traces of AP

(blue) and evoked EPSC (orange). Scale bars, 15 mm; inset, 2 ms, 20 mV (top), 100 pA (bottom).

(E) Stimulation of the presynaptic cell selectively destains FM4-64 fluorescence from the synapse belonging to the labeled axon (3) and not from those originating

from unlabeled axons (1 and 2). Red line is a single exponential fit. Scale bar, 5 mm.

(F and G) Destaining traces from 19 synapses from one connection (F) and corresponding release probability frequency histogram (G). Solid line is g function

fit (l = 5.8, n = 3).

Error bars are ± SEM.
with an average median of 0.22 ± 0.03 and mean coefficient of

variation (CV) of 0.66 ± 0.06 (n = 12 cells). To address what

underlies this high variability of release probabilities, we then

carried out a detailed analysis of pr distribution. To do this, we

first computed the absolute pr difference between each synapse

in a given cell and all other synapses from the same cell. This

yielded a mean absolute pr difference of 0.19 ± 0.03, a value

that was similar to that expected by random sampling of the

measured pr distribution (0.18, p = 0.8116). We next normalized

pr differences for each synapse pair by the standard deviation of

each cell to generate a measure that allowed us to quantify the

magnitude of the similarity between any two synapses in a given

cell. This gave a mean difference of 1.27 ± 0.20 SDs for all cells

analyzed. Using this measure, we then analyzed the spatial dis-

tribution of pr along the dendrites by computing the average pr

difference between all synapses on single dendritic branches.

We found that even for single branches there was a large variabil-

ity in release probability (mean difference = 1.33 ± 0.04 SDs, not

different from global mean difference, p = 0.4449; CV = 0.61 ±

0.06, not different from global CV, p = 0.5576; Figures 1A and

1C). This finding is in accordance with previous ultrastructural

data from native hippocampal tissue where the size of presynap-
476 Neuron 59, 475–485, August 14, 2008 ª2008 Elsevier Inc.
tic terminals onto dendritic branches is highly nonuniform (Harris

and Sultan, 1995). Next, using whole-cell patch clamp, we stim-

ulated target neurons and measured pr at all synapses on the

axonal arbor of single cells. Again, we found a large variability

for synapses in individual axonal branches (mean difference =

1.27 ± 0.06 SDs, not different from global mean difference,

p = 0.4792; CV = 0.69 ± 0.09, not different from global CV, p =

0.7945, n = 5 cells; Figures 1B and 1C). Furthermore, no relation-

ship was found between pr and distance to the soma along the

dendrite or the axon (Figure S2A). Interestingly, a small but

significant negative correlation was found between synaptic

density and release probability of synapses along a dendrite

(R = �0.38, p = 0.0351; Figure S2B), although no such relation-

ship was found for synapses along the axon.

To remove the potential sources of variability on pr arising from

examining a mixed population of synapses with different neuro-

nal sources or targets, we next restricted our analysis to synap-

ses connecting two neurons. Excitatory postsynaptic currents

(EPSCs) were recorded with paired whole-cell patch clamp,

and synaptic contact points were identified using FM4-64 and

Alexa dye fills of axons and dendrites (Figures 1D and 1E). On

average, we detected 8 ± 5.4 (SD) contact points between two
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cells with the culture conditions used. This is comparable to find-

ings in intact tissue, where multiple synapses have been found

with light microscopy and ultrastructural analysis in connections

between stratum radiatum-CA1 pyramids (Sorra and Harris,

1993) and CA1 and CA3 pyramidal cells-interneurons (Biró et al.,

Figure 2. Release Probability Is Dendritically Segregated

(A and B) Images (left) and destaining curve fits (right) for synaptic contacts

between a cell pair, on different (A) or the same dendritic branches (B) of the

postsynaptic neuron (axon is blue and dendrite is orange). Release probability

of synapses on the same dendritic branch is very similar. Scale bars, 5 mm.

(C) Summary of similarity comparisons between synapse pairs. Dashed line

indicates expected mean difference due to chance from Monte Carlo simula-

tions (1.15 SDs, Wilcoxon rank sum test for axon p = 0.1023, dendrite

p < 0.0001). Mean intersynaptic distances were not significantly different

(axon versus dendrite, p = 0.1406, axon = 8.5 ± 5.3 mm [SD], dendrite = 5.9 ±

3.0 mm [SD]).

(D) Normalized release probability plotted against number of synapses in the

axonal branch (open circles) and in the dendritic branch (closed circles). pr

homeostatically adapts to the number of synapses made by the presynaptic

cell onto the same dendritic branch. Lines are linear fits to the data. Error

bars are ± SEM.
2005; Wittner et al., 2006), and with quantal analysis in excitatory

connections onto CA1 pyramids (Larkman et al., 1997). Even in

this reduced synaptic population, pr had a broad and skewed dis-

tribution with an average median of 0.22 ± 0.04 and mean CV of

0.51 ± 0.13 (n = 7 pairs, Figures 1F and 1G). The average absolute

pr difference between all synapses of a given connection was

0.19 ± 0.01, not different from the value expected by random

sampling (0.17, p = 0.6383), corresponding to 1.29 ± 0.07 SDs.

We then repeated the branch-specific spatial analysis as above

for both axons and dendrites. We found that while pr could be

very different for synapses made along short segments of axons

contacting different dendrites (mean difference = 1.34 ± 0.10

SDs, not different from global mean difference, p = 0.8652;

CV = 0.48 ± 0.09, not different from global CV, p > 0.9999), pr

was very similar for synapses that shared the same dendritic

branch (mean difference = 0.44 ± 0.07 SDs, significantly different

from synapses made on different dendrites from the same axon,

p < 0.0001, and from global mean difference, p < 0.0001; CV =

0.12 ± 0.04, significantly different from global CV, p = 0.0007;

Figures 2A–2C). To confirm that pr is segregated in a branch-

specific manner, we analyzed release probability of synapses

separated by dendritic branch points and found that in these

cases pr is markedly different (mean difference = 1.52 ± 0.26

SDs, p < 0.0001 compared with synapses made exclusively on

the parent or daughter branch; Figure S3). We also analyzed

recycling pool sizes and found that this parameter exhibited

dendritic homogeneity similarly to pr (Figure S4). Furthermore,

release probability displayed a strong negative correlation with

the number of synapses that the axon made on the dendritic

branch (R = �0.53, p < 0.0001; Figure 2D), but not with the num-

ber of synapses along an axon contacting different dendrites

(R = 0.01, p = 0.9349). These observations suggest that, for single

inputs, pr is not randomly distributed but rather that release

probability is segregated at the level of individual dendrites.

Spatial Analysis of pr at the Ultrastructural Level
We next examined the spatial distribution of pr using ultrastruc-

tural analysis, where we could unequivocally identify single syn-

apses and the axonal and dendritic processes they belong to at

high resolution. To measure release probability, we directly

counted the number of vesicles exocytosed in response to a de-

fined number of action potentials (APs). This relied on FM1-43

photoconversion to distinguish vesicles labeled with FM dye af-

ter exo/endocytosis, which appear dark in electron micrographs,

from nonlabeled vesicles (Harata et al., 2001; Schikorski and

Stevens, 2001; Darcy et al., 2006). Synapses were FM1-43

loaded using field stimulation (30 APs, 1 Hz), identified at fluores-

cence level, and subsequently photoconverted, embedded, and

serially sectioned (Figures 3A and 3C–3G). Labeled synapses

(n = 31 from four cultures) had a median total pool size of 296

vesicles (interquartile range [IQR] = 306) and a median pr of 0.37

(IQR = 0.75). Using this synapse population, we analyzed the

spatial distribution of pr by examining all cases where synapses

(1) shared the same axon branch but different dendrite or

(2) shared the same axon branch and same dendrite. Consistent

with our fluorescence measurements, synapses made onto the

same dendrite had very similar pr (mean difference = 0.31 ±

0.14 SDs), while those contacting different dendrites had highly
Neuron 59, 475–485, August 14, 2008 ª2008 Elsevier Inc. 477



Neuron

Local Dendritic Regulation of Release Probability
variable release probabilities (mean difference = 1.51 ± 0.66

SDs, p = 0.0438; Figure 3B).

Pr Responds Homeostatically to Increased
Dendritic Activity
Taken together, our fluorescence and ultrastructural observa-

tions demonstrate that, in a connection between two neurons,

neighboring synapses on the same dendritic segment have

very similar release probabilities, whereas no such relationship

is seen between pr and the disposition of boutons along the

axon. Moreover, pr is negatively correlated with the number of

synapses made by the axon onto the dendrite. These findings

suggest that some form of dendritically coordinated homeostatic

adaptation contributes to the local setting of basal release prob-

ability. We next sought to test this hypothesis by first establishing

a condition that drives homeostatic changes in pr and then ex-

amining the contribution of dendritic activity in altering pr. We in-

creased network activity by delivering APs at 1–2 Hz for 2 hr and

estimated release probability with whole-cell paired recordings

(Figure 4A). This manipulation resulted in a 23% ± 5% increase

in the paired-pulse ratio (PPR) of EPSC amplitudes (control

Figure 3. Ultrastructural Analysis of Release

Probability

(A) Experimental scheme. FM dye was loaded into

synapses with 30 APs delivered by field stimula-

tion, and samples were photoconverted, serially

sectioned, imaged, and reconstructed. Release

probability was estimated by counting the number

of photoconverted vesicles.

(B) Summary of similarity comparisons, showing

that synapses on the same dendrite have very

similar release probabilities (axon versus dendrite,

p = 0.0438). Dashed line indicates the expected

difference due to chance from Monte Carlo simu-

lations (1.1 SDs, Wilcoxon rank sum test for axon

p = 0.8750, dendrite p = 0.0156).

(C–E) Representative experiment showing one

axon (blue) making synapses (red) with two differ-

ent dendrites (orange). (C) Low-magnification

electron micrograph with FM dye fluorescence

overlaid. (D) Same micrograph as in (C) with axon

and dendrite colored for clarity. (E) 3D reconstruc-

tion with vesicle clusters in red.

(F) Higher-magnification micrograph of the boxed

synapse in (E) where photoconverted vesicles

are clearly seen.

(G) 3D reconstruction of the same synapse with

photoconverted vesicles (black) and active zone

(red).

Scale bar in (C)–(E), 1 mm; (F) and (G), 100 nm. Error

bars are ± SEM.

PPR = 0.71 ± 0.05, n = 16), consistent

with a decrease in release probability (t

test, p = 0.0394, n = 8; Figure 4B). We

next compared pr between control and

stimulated cultures using quantal analy-

sis. EPSCs were recorded under low pr

conditions by adjusting the extracellular

Ca2+/Mg2+ ratio to the point where fail-

ures of evoked responses could be detected (control failure

rate = 32% ± 3%, n = 7), which decreased the mean quantal con-

tent (control mean quantal content = 1.19 ± 0.09) and produced

clearly quantized evoked responses (Figure 4C, right, inset) that,

when converted to a frequency histogram, appeared as well-de-

fined peaks. For each cell, we also recorded spontaneous mini-

ature EPSCs and baseline noise, and an analysis of the histo-

grams was performed as in Larkman et al. (1997). In all cells

examined, clear, equally spaced peaks were identified, with the

first and second peaks matching the baseline noise and mEPSC

histograms, respectively (Figure 4C). We then fitted a compound

binomial model to the identified peaks to extract mean release

probability, number of active release sites (N), and pr CV. Control

values were pr = 0.16 ± 0.04 (the reduced extracellular Ca2+/Mg2+

compared to our FM dye experiments yields a lower pr estimate),

pr CV = 0.50 ± 0.15 and N = 11 ± 0.5, in good agreement with

the values obtained from FM dye destaining. Analysis of stimu-

lated cultures showed a 70.0% ± 11% decrease in pr (p =

0.0424, n = 4), with no change in N (p = 0.3420; Figure 4D). There-

fore, release probability responds homeostatically to elevated

network activity arising from the 2 hr stimulation protocol.
478 Neuron 59, 475–485, August 14, 2008 ª2008 Elsevier Inc.



Neuron

Local Dendritic Regulation of Release Probability
Figure 4. Release Probability Is Set by Dendritic Activity

(A) Two experimental schemes: activity (left) and activity + block (right). (Left) Activity in the culture was increased by delivering APs with field stimulation for 2 hr,

and paired whole-cell recordings were used to assess the impact of this manipulation on release probability. (Right) For activity + block condition, a similar

experimental scheme was used, but excitatory synaptic activity was blocked during stimulation.

(B) Example paired-pulse EPSC traces (left, averages of 20) and summary of paired-pulse EPSC amplitude ratio (right), showing an increase of PPR with activity,

which is abolished by synaptic blockers. Scale bars, 15 ms, 200 pA top, 100 pA bottom.

(C and D) Recordings in 1 mM Ca2+/3 mM Mg2+. ([C], left) Frequency histogram of mEPSC integral (white) and baseline noise (gray). Arrowhead indicates the

mEPSC integral mean. ([C], right) Smoothed histogram of evoked response integrals on the same postsynaptic cell, showing well-defined peaks at equally

spaced distances. Note that the first two peaks correspond to the baseline noise and mEPSC mean in the left panel. Inset shows example traces where different

number of quanta have been released. Scale bar, 2 ms, 50 pA. (D) Increasing activity leads to a significant decrease in release probability, which is abolished by

blocking excitatory synaptic transmission. Smoothed integral histograms of evoked responses for example connections are shown, after increased activity alone

(left), and with synaptic blockers (center). ([D], right) Summary of pr changes for all connections.

Error bars are ± SEM.
In order to determine whether homeostatic downregulation

of pr is specifically dependent on dendritic activity and how pre-

synaptic activity might contribute to this process, we selectively

silenced postsynaptic excitatory activity by stimulating the net-

work in the presence of glutamate receptor blockers. We found

no compelling evidence for neurotransmitter release modulation

by presynaptic AMPA or NMDA receptors in our cultures

(Figure S5), and thus this manipulation eliminates dendritic activ-

ity while allowing normal presynaptic function. Block of excit-

atory receptors significantly abolished the increase in PPR of

evoked responses (t test, p = 0.0377, n = 6; Figure 4B). Moreover,

quantal analysis (p = 0.0420, n = 4) revealed a tendency for

release probability to be higher than in control, indicative of a ho-

meostatic adaptation to reduced activity despite enhanced pre-

synaptic stimulation (Figure 4D). As with the control activity alone

condition, no changes were detected in the number of release

sites. These results therefore strongly suggest that homeostatic

adjustment of pr depends on postsynaptic activation and that re-

lease of neurotransmitter from the presynaptic terminal by itself

is not sufficient to downregulate pr. Given that our stimulation

protocol evokes spikes in both pre- and postsynaptic cells, these
data also indicate that action potential firing and back-propaga-

tion alone cannot account for the observed decrease in pr.

Local Homeostasis Underlies pr Variability
What might give rise to the observed heterogeneity of pr? This

could be explained if homeostatic regulation of release probabil-

ity is implemented locally, where spatially distinct parts of the

dendritic tree receiving different inputs experience different ac-

tivity levels and consequently have synapses with dissimilar pr.

In this case, upon forcing inputs to the dendrite to be uniform

across the entire dendritic tree, the variability in pr should be-

come very small. To test this prediction, we used two different

experimental conditions to uniformly modulate input to dendrites

(Figure 5A). First, we blocked excitatory and inhibitory postsyn-

aptic receptors for 24 hr, thereby rendering all dendrites silent.

Second, we uniformly increased dendritic depolarization by rais-

ing the KCl concentration in the culture media while blocking

postsynaptic receptors for 24 hr. For each case, we then re-

peated the pr measurements at individual synapses between

identified cell pairs using whole-cell patch clamp and FM dye

imaging. Under both conditions, the variability of release
Neuron 59, 475–485, August 14, 2008 ª2008 Elsevier Inc. 479
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probability was greatly reduced (CV = 0.17 ± 0.03, p = 0.0087,

n = 5 for activity block and CV = 0.19 ± 0.06, p = 0.0303, n = 5

for KCl; Figures 5B and 5C), while pr changed homeostatically in

opposite directions (average median pr = 0.41 ± 0.01, p < 0.0001

for activity block, pr = 0.07 ± 0.01, p < 0.0001 for KCl; Figures

5B and 5C). Moreover, in accordance with reduced pr variability,

the average absolute pr difference between all synapses in a

connection decreased to 0.12 ± 0.01 for block and 0.03 ± 0.01

for KCl (significantly different from control, p < 0.0001 and

p < 0.0001, respectively).

We then repeated the branch-specific spatial analysis of pr.

Given that under these conditions there was a marked decrease

in the standard deviation of the pr distribution, to allow compar-

isons to control conditions we calculated mean pr differences as

before but then expressed them as a fraction of the control pop-

ulation SD. Consistent with the overall increase in release prob-

ability uniformity, mean pr differences between synapses be-

longing to different dendritic branches decreased to 43% ±

4% of control for block and to 3% ± 0.4% of control for KCl

(p < 0.0001 and p < 0.0001, respectively) and were not signifi-

cantly different from pr differences between synapses in the

same dendritic branch (p = 0.2660 for block and p = 0.1314 for

KCl; see Figures 5D–5F). Furthermore, the relationship between

pr and the number of synapses made on the dendrite was lost

(R = �0.03, p = 0.8746 and R = �0.45, p = 0.0804, respectively;

Figure 5G). The same increase in similarity was found for recy-

cling pool sizes (Figure S4). The heterogeneity of pr, therefore,

is a consequence of nonuniformity of dendritic activity.

To directly monitor local modulation of pr, we carried out

experiments where we increased synaptic activity to induce

homeostatic downregulation of pr, but restricted stimulation to

a subset of synapses in a dendritic branch (Figures 6A and 6B).

We then measured pr by labeling all synapses with FM dye (30

APs, 1 Hz; Figures 6C and 6D). After 2 hr of localized stimulation,

release probability of the stimulated synapses was 41% ± 4%

lower when compared to unstimulated synaptic neighbors

(p < 0.0001), and this effect was blocked by CNQX and APV

(p = 0.1872; Figures 6D and 6E). Altogether, these results indicate

that the homeostatic control of pr is implemented locally.

Our spatial analysis of pr shows that a high degree of pr simi-

larity in individual dendritic branches occurs only if synapses

come from the same presynaptic cell. This implies that pr ho-

meostasis is triggered by the increased level of postsynaptic ac-

tivity that is coincident with presynaptic activation. In this case,

synapses in a dendrite that belong to the same axon are acti-

vated synchronously, and they would adapt to similar levels of

dendritic depolarization. On the other hand, synapses from dif-

ferent inputs that are likely to be active asynchronously would

produce different depolarization levels, and consequently they

would generate different pr adaptations. To provide experimen-

tal support for this hypothesis, we used DIC and FM dye images

to trace the axons of synapses analyzed in our local activity ma-

nipulation experiments (Figure S6). We found that, in all cases,

synapses from different presynaptic cells were found in the stim-

ulated area (Figure 6F, top half) and that, after stimulation, the CV

of release probability was significantly reduced to the level of

Figure 5. Variability of Release Probability

Results from Local Adaptations to Dendritic

Activity

(A) Experimental scheme. Inputs to the dendrite

were made uniform pharmacologically by treating

cultures for 24 hr under ‘‘synaptic block’’ (CNQX,

APV, bicuculline) or ‘‘uniform depolarization’’

(CNQX, APV, bicuculline, 20 mM KCl). Release

probability was measured by the FM dye destain-

ing rate in paired recordings, as in Figures 1 and 2.

(B) Frequency histograms for two example con-

nections show opposite changes in pr for synaptic

block (left) versus uniform depolarization (right).

Lines are Gaussian fits. Note change in the shape

of the distribution compared with Figure 1D.

(C) Data summary showing significant decreases

in global pr CV and homeostatic changes in pr.

(D and E) Example connections of synapses on dif-

ferent dendrites (left) and respective fits to FM4-64

destaining curves (right) for synaptic block (D) and

uniform depolarization (E). Scale bars, 5 mm.

(F) Summary of similarity comparisons for both

conditions shows that the mean pr difference for

synapses on different dendrites is significantly

reduced after the activity manipulations.

(G) Release probability normalized for each con-

nection plotted against the number of synapses

in the dendrite for block (open circles) and uniform

depolarization (closed circles). The relationship

between pr and synapse density is lost (see

Figure 2D). Lines are linear fits to the data.

Error bars are ± SEM.
480 Neuron 59, 475–485, August 14, 2008 ª2008 Elsevier Inc.
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Figure 6. Local Stimulation Decreases

Release Probability Selectively

(A and B) Theta-glass pipette stimulation produces

a localized synaptic response. (A) Synapses were

labeled with FM dye (red), and a whole-cell record-

ing was established. An EPSC (inset trace) was

evoked by positioning the stimulating pipette in

front of a group of synapses on the dendrite of the

recorded cell (colored blue for clarity), confirming

successful synaptic stimulation. Scale bars, 2 ms,

10 pA. (B) The same synapses were stimulated by

1200 APs at 20 Hz, and FM dye fluorescence was

monitored. Inset graph shows that only the group

of synapses directly in front of the pipette lost FM

dye fluorescence, indicating high spatial selectivity

of the stimulus. Scale bar, 5 mm.

(C) Local stimulation was used to increase synaptic

activity in a restricted part of a dendritic branch,

and pr was estimated subsequently by loading

synapses with FM dye.

(D) Example DIC image of a dendritic branch with

a group of synapses, which were stimulated for

2 hr, with superimposed pseudocolored FM4-64

puncta. Fluorescence intensity represents pr.

Scale bar, 5 mm.

(E) Data summary showing that pr decreases

only in stimulated synapses and that this effect is

abolished by synaptic blockers.

(F) Another example image of the same experiment

shown in (D), where synapses of interest have been

categorized according to the axon they belong

to (color dots, see Figure S6 for details on axon

tracing procedure). Scale bar, 10 mm.

(G) Data summary showing that local stimulation

selectively decreases pr even if synapses on the

dendritic branch belong to the same presynaptic

input.

(H) Summary data demonstrating that pr of synap-

ses from different inputs becomes similar after

stimulation. Error bars are ± SEM.
synapses from the same input onto a single dendritic branch (p <

0.0001; Figure 6H). This shows that if two inputs from different

presynaptic cells are forced to release synchronously, they ac-

quire similar release probabilities. In some cases, synapses

from the same axon were found both in the stimulated and non-

stimulated area of the same dendritic branch (Figure 6F, bottom

half). Only the stimulated group showed a decrease in pr (p =

0.0038; Figure 6G), strongly supporting the argument that the

pr similarity found for synapses from the same input onto the

same branch results from synchrony of their activation. Taken

together, these observations suggest that release probability is

downregulated by a coincidence detection mechanism that

requires neurotransmitter release and dendritic depolarization.

DISCUSSION

In this study, we combined fluorescence imaging and electro-

physiological and ultrastructural methods in dissociated hippo-

campal cultured neurons to address the determinants of release

probability at single synapses. Initially, we considered the spatial

organization of pr. Although the pr distribution was broad with

high CV in pairs of synaptically connected cells, an analysis of
spatial distribution at the level of axonal and dendritic branches

showed that synapses made on the same branch of the dendrite

had a high degree of similarity. However, when one axon branch

contacted different dendritic branches, variability was not signif-

icantly different from what might be expected by chance. Be-

cause our analysis was always restricted to segments of axons

in between two branch points, failures of action potential propa-

gation would not provide a satisfactory explanation for the ob-

servation of high pr variability in the axon. This basic organiza-

tional principle of pr was also supported by two further lines of

evidence. First, a spatial relationship similar to that for release

probability was established for the total recycling pool size,

a known correlate of pr. Second, a spatial analysis of pr at EM

level also showed dendritic clustering of release probabilities.

This suggests that release probability of synapses from a given

axon is biased toward acquiring a particular value at individual

dendritic branches. Our spatial analysis also revealed an addi-

tional salient feature: pr is inversely correlated with the number

of synapses made on the same branch of the dendrite. Since ac-

tion potential firing in cultured neurons is likely to be random due

to a lack of external input, the level of activity of any given part of

the dendritic tree should be proportional to the number of
Neuron 59, 475–485, August 14, 2008 ª2008 Elsevier Inc. 481
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synapses. Thus, the relationship between synapse number and

pr can be viewed as a relationship between activity in the den-

drite and release probability. The fact that no such correlation

was found for synapses along an axon contacting different den-

drites could not be explained by a systematic difference in dispo-

sition or density of boutons, since the intersynaptic distance and

process length were not different between the two cases. Col-

lectively, these data imply that release probability homeostati-

cally adapts to the level of activity in the dendrite, and since dif-

ferent branches have different mean prs, such regulation must be

implemented locally. A negative correlation between pr and syn-

apse density was also found for all synapses along a dendrite, re-

gardless of their origin. However, this correlation was weaker

and less steep than for synapses arising from the same input,

in line with our argument that the negative feedback regulation

we describe is dependent on postsynaptic activation that is

coincident with presynaptic activation.

We used paired whole-cell recordings and three different

estimates of pr to explore homeostatic adaptations of release

probability. Whereas continuous low-frequency delivery of ac-

tion potentials to the whole network caused an expected signif-

icant decrease in pr, eliciting action potentials while blocking ex-

citatory synaptic transmission uncoupled pre- and postsynaptic

activity and enabled us to investigate the locus of homeostatic

plasticity induction. Importantly, stimulating the network in the

presence of glutamate receptor blockers represents a different

condition to blocking receptors alone. While in the former,

evoked neurotransmitter release still occurs, in the latter, the

lack of excitatory input abolishes network AP firing. The fact

that, in the presence of synaptic blockers, release probability

did not decrease despite enhanced axonal activity indicates

that a direct action of neurotransmitter on the presynaptic termi-

nal or the average level of depolarization in the presynaptic com-

partment is not sufficient for homeostatic adaptation of pr.

Rather, it supports the view that neurotransmitter has to depolar-

ize the dendrite for homeostatic mechanisms to be activated.

To address the local nature of the relationship between pr and

dendritic depolarization, we forced spatially uniform depolariza-

tion levels along the dendritic tree by either blocking excitatory

and inhibitory synaptic input or by increasing the culture medium

KCl concentration while blocking postsynaptic receptors. Main-

taining these manipulations for 24 hr resulted in a homeostatic

change in release probability in which synapses had very similar

pr regardless of their spatial arrangement. Importantly, these

manipulations do not represent extremes of membrane potential

displacement. Given that, in our system, neurotransmitter re-

lease occurs at a rate of �5 Hz, neurons will spend the majority

of time near resting potential. Completely blocking synaptic ac-

tivity will thus only eliminate the small membrane depolarizations

brought about by single or miniature EPSPs, leaving the cell per-

manently at resting potential. This is clearly a very mild change to

the membrane potential, well below changes brought about by

inhibition, for example. The KCl manipulation depolarizes the

soma by �15 mV, as measured by whole-cell recording, which,

while being stronger than activity block, is well within the limits of

physiological relevance. Therefore, the type of pr regulation we

observe is very sensitive to small changes in postsynaptic mem-

brane potential, and the resulting similarity of pr across synapses
482 Neuron 59, 475–485, August 14, 2008 ª2008 Elsevier Inc.
does not represent the consequence of driving synaptic strength

to the end of the dynamic range by extreme changes in mem-

brane potential. Furthermore, the finding that under these condi-

tions CV and similarity values for synapses in the same dendrite

are the same as in control suggests that the changes elicited by

the manipulations are within physiological range and are not

taking the system to artifactual limits.

The observed loss of release probability variability upon spa-

tially uniform manipulations of the postsynaptic membrane po-

tential strongly links the pr heterogeneity with the nonuniformity

in inputs to the dendritic tree, thus providing additional support

to the idea that the homeostatic response of release probability

is implemented at a local level. Furthermore, under these condi-

tions, the inverse relationship between release probability and

the number of synapses on the same branch of the dendrite is

lost. This is presumably because postsynaptic receptor blockers

prevent each synapse from having an impact on dendritic activ-

ity, and each individual synapse will adapt to the same average

membrane potential. Therefore, in order for a relation between

synapse number and pr to be established, the difference in the

number of synapses has to be converted into a difference in local

dendritic activity. Importantly, the local regulation of release

probability was further confirmed by selectively stimulating

a small group of synapses for 2 hr, which produced a compensa-

tory decrease in pr that was confined to the stimulated area, as

was the corresponding increase in similarity.

One possible explanation for the observation of spatial pr seg-

regation is a developmental one. Given that pr is developmentally

regulated, being initially high and decreasing with maturation

(Reyes and Sakmann, 1999; Chavis and Westbrook, 2001), syn-

apses of the same age are expected to have similar release

probabilities. In such a case, spatial segregation would reflect

developmental age, where synapses in the same branch have

been formed at the same time. Although efforts were made to en-

sure the overall maturity of our cultures (Figure S7), we cannot

exclude that different synapses are at different stages of matura-

tion and that this contributes to the observed spatial distribution.

However, the inverse correlation between the number of synap-

ses on the dendrite and pr, and the changes in pr and its variabil-

ity imposed by different activity manipulations, highlight the link

between postsynaptic activity and release probability and

indicate that developmental maturity is not the main variable

determining pr in our system.

A recent study in L2/3 cortical cells has suggested that synap-

ses onto the same postsynaptic target adopt the same pr, re-

gardless of their position in the dendritic tree. In their study

they estimated an overall CV of �0.20 (Koester and Johnston,

2005). Despite the apparent contradiction with our results, their

finding can actually be readily explained by the model of pr reg-

ulation we propose. Assuming there is no systematic bias in the

distribution of synapses in vivo, the high and uniform density of

synaptic contacts along a given branch will produce, on average,

the same activity level. Synapses from a single axon will there-

fore operate on a similar dendritic activity background irrespec-

tive of their location in the dendritic tree, and our model predicts

that they will adapt to a release probability representing this

background and the depolarization caused by their activation.

Given that such synapses share the same presynaptic cell, their
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activation rate will be the same and therefore would be expected

to develop similar release probabilities. We also believe that our

model can fully account for the wide pr variability observed in au-

taptic synapses. Given that pure autaptic cultures are isolated

from any other inputs, they seldom fire action potentials sponta-

neously, and thus synaptic activity is restricted to spontaneous

neurotransmitter release occurring stochastically in space and

time. Given this scenario, and in view of our suggestion that

pr modulation is restricted to activated synapses, the reported

variability in autapses is to be expected.

Previous studies have reported homeostatic regulation of pr in

response to inactivity (Murthy et al., 2001; Bacci et al., 2001; Bur-

rone et al., 2002; Thiagarajan et al., 2005; Wierenga et al., 2006),

and this is thought to maintain stability in the network while per-

mitting efficient Hebbian learning (Burrone and Murthy, 2003).

Likewise, we suggest here that homeostatic setting of basal

release probability at individual synapses ensures that each syn-

apse is optimally placed to undergo changes such as those ob-

served in short- and long-term plasticity (Stevens and Wang,

1994). To provide a theoretical basis for this, we simulated

a CA1 pyramidal cell receiving a variable number of excitatory

synaptic inputs stimulated synchronously. Although in our sim-

plified culture system and some types of connections in the in-

tact hippocampus this corresponds to one axon making multiple

contacts in one dendrite, in other cases this would be equivalent

to synchronous and layered inputs into the dendritic tree. We

found that, while synaptic output increased linearly with in-

creases in release probability when one synapse was stimulated,

synchronous activation of more than one synapse led to sublin-

ear responses as pr approached 1, due to a reduction in the driv-

ing force and shunting (Figure S8). Therefore, to prevent satura-

tion of synaptic current, synapses match their release probability

to the level of activity on the postsynaptic target. Since each den-

drite can behave as a different electrotonic compartment (Rabi-

nowitch and Segev, 2006) and is likely to receive different inputs,

this mechanism must be implemented locally to be effective. In

contrast to more traditional forms of synaptic homeostasis that

are thought to represent a cell-wide phenomenon (Turrigiano

and Nelson, 2000), theoretical prediction (Rabinowitch and Se-

gev, 2006) and recent experimental evidence also point to a local

homeostatic control of synaptic strength (Ju et al., 2004; Liu,

2004; Sutton et al., 2006). Aside from preventing synaptic satu-

ration, such a mechanism could function to match the strength

of synaptic input to the degree of excitability of each dendritic

compartment (Polsky et al., 2004).

Collectively, our results indicate that individual synapses must

monitor activity of their neighbors and continually adjust their re-

lease probability. One important issue that remains to be fully

characterized is the extent of the spatial spread of this feedback

regulation, which will be dependent on the underlying mecha-

nism. Given the branch-specific distribution of release probabil-

ity and the triggering of pr homeostasis with increased depolar-

ization, even in the presence of synaptic blockers, we suggest

that a dendritic depolarization-dependent release of a feedback

substance might be responsible for pr homeostasis. Since tran-

sient synaptic potentials spread very efficiently through short

dendritic branches but decay considerably with branching, a

depolarization-based pr regulation would be expected to mainly
affect synapses in the same branch of the dendrite. This could be

implemented by known retrograde messengers involved in feed-

back regulation of release probability, such as the ones

described for the Drosophila neuromuscular junction (Frank

et al., 2006; Davis, 2006) and those thought to underlie both

the target-cell dependence of pr and forms of short-term plastic-

ity or LTD (Duguid and Sjöström, 2006). We cannot, however,

exclude the possibility that the spatial spread is in the range of

a few microns, something that could be mediated by entry of cal-

cium via GluR2-lacking AMPA receptors, for example. Impor-

tantly, our model proposes that this form of pr homeostasis

only affects synapses that have released neurotransmitter. This

implies that, apart from a retrograde messenger, some form of

coincidence detection is also needed, such as activation of

pre- or postsynaptic mGluRs by the released glutamate, for

example (Conn and Pin, 1997).

The release probability homeostasis model we propose differs

from more classic forms of homeostasis (Turrigiano and Nelson,

2000), not only because it appears to be local but also because it

seems to act over a different timescale. Although the direction of

change is the same as previously described for presynaptic

changes, classic homeostasis is thought to occur over hours/

days, whereas our 2 hr activity manipulations were sufficient to

change release probability. Furthermore, the finding that this

mechanism drives pr heterogeneity in the resting state indicates

that this mode of regulation operates with basal, random, spon-

taneous activity and is not dependent on some sort of threshold

or timed activity. We thus propose that this feedback regulation

of pr acts within a very short integration window, being rapidly

activated by each single quanta of neurotransmitter released

and continuously operating on the background to quickly adapt

release probability to the dendritic environment. This type of mo-

del is similar to what Frank et al. (2006) found for the Drosophila

NMJ and is consistent with that described by Sutton et al. (2006)

for postsynaptic scaling. In this way, this mechanism is also dif-

ferent from classic Hebbian plasticity, like LTD, for example,

where particular stimulus conditions have to be met for such

plasticity to develop. It is worth noting that LTD is, in itself,

a form of synaptic homeostasis, and it might be that both forms

of plasticity are part of one continuum, the major difference

between them being the rate at which voltage perturbations of

the membrane potential are imposed.

EXPERIMENTAL PROCEDURES

Cell Culture

Hippocampal neurons were obtained from P0–P1 rat pups and plated at low

density onto an astrocyte feeder layer and maintained in Neurobasal-based

culture media. Cells were used for experiments at 10–15 days in vitro.

Electrophysiology

Paired whole-cell recordings were obtained with pipettes (3–5 MU) containing

(in mM) 115 KMeSO4, 5 KCl, 4 NaCl, 10 HEPES, 0.5 CaCl2, 10 creatine phos-

phate, 2 MgATP, 2 Na2ATP, 0.3 Na3GTP, 10 glutamic acid (pH 7.20), and

100 mM Alexa 488 or 500 mM Alexa 350 hydrazide (Molecular Probes). The ex-

ternal solution contained (in mM) 125 NaCl, 5 KCl, 10 D-glucose, 10 HEPES

with 2 CaCl2 and 1 MgCl2 unless otherwise stated (pH 7.30). Recordings

were made at 34�C ± 1�C in the presence of 10 mM picrotoxin to isolate excit-

atory currents and discarded if the access resistance was >30 MU (not com-

pensated). Data were acquired with a Multiclamp 700B (Axon Instruments),
Neuron 59, 475–485, August 14, 2008 ª2008 Elsevier Inc. 483
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filtered to 10 kHz and digitized at 50 kHz. APs were elicited in current clamp by

injecting 1 ms 0.5–1 nA current pulses and the postsynaptic cell was voltage

clamped, usually at �70 mV (corrected for a junction potential of 10 mV).

For paired-pulse experiments, interpulse interval was 50 ms and a minimum

of 30 sweeps were acquired at 0.1 Hz. For recordings in low Ca2+, the stimu-

lation frequency was 1 Hz and 100–300 traces were obtained. Data were an-

alyzed with Neuromatic software, and only monosynaptic responses were

considered (mean latency 1.94 ± 0.15 ms, 20%–80% rise-time 472 ± 30 ms).

In low Ca2+ conditions, events were considered to be evoked EPSCs if they

fell within the time period defined by the averaged evoked EPSC time course.

EPSC integral histograms were constructed using small bins and smoothed

with a binomial algorithm in Igor Pro 4.06 (WaveMetrics). The position of the

peaks was identified by Gaussian fitting (Larkman et al., 1997). For fitting of

a compound binomial model, Monte Carlo simulations of quanta release

with varying numbers of release sites and pr distributions with different CVs

were performed in Matlab 7.1 (Mathworks), and the distribution that best fitted

the data selected.

Imaging

Epifluorescence images were acquired on an inverted Olympus IX71 micro-

scope using a Micromax cooled-CCD camera (Princeton Instruments) driven

by Metamorph software (Universal Imaging). Synapses were labeled with

FM4-64 by incubating cultures with 10 mM of dye in extracellular solution con-

taining 90 mM KCl, CNQX (20 mM), and APV (50 mM) for 1 min at room temper-

ature. Following this, neurons were rinsed in normal extracellular solution con-

taining FM4-64 for a further minute to allow completion of endocytosis. Cells

were then washed in extracellular solution with 0.5 mM Ca2+ and 10 mM

Mg2+ to minimize dye loss from spontaneous release, and Advasep-7

(1 mM, Biotium) was included for the first minute of the washing procedure to

assist with FM dye removal from membranes. For experiments in single cells,

neurons were filled with Alexa dye via a patch pipette, and FM dye destaining

was evoked either by field stimulation in a custom-made chamber or via the

patch pipette, as referred in the text. For connected cells, after a paired record-

ing was obtained and neuronal processes were filled with Alexa dye, a region of

interest that included FM-labeled puncta that were likely synaptic contact

points between the recorded neurons was chosen, and FM dye destaining

was monitored by acquiring images every minute at room temperature. During

stimulation, CNQX (20 mM) and APV (50 mM) were used to prevent recurrent

stimulation of the network. The fluorescence of each FM dye punctum was

quantified using custom-written routines in Igor Pro 4.06 (WaveMetrics) and

Matlab 7.1 (Mathworks), and pr was calculated from the estimated recycling

pool size and destaining kinetics (Figure S1). For release probability compari-

sons between synapses, pr difference was calculated between each synapse

and all other synapses in the branch or cell, depending on the experiment, and

this value was averaged. Absolute differences were normalized to the pr SD of

each cell. In an initial set of experiments, the maturity of the synapse popula-

tion under study was assessed by colabeling synapses with FM4-64 and an

antibody raised against the extracellular domain of GluR2 (Chemicon, see

Figure S5).

Electron Microscopy

Synaptic vesicles were labeled with a fixable form of 10 mM FM1-43 (FM1-

43FX, Molecular Probes) and washed as above. Neurons were fixed, and

FM dye was photoconverted in the presence of diaminobenzidine (1 mg/ml)

before being prepared for electron microscopy as previously described (Darcy

et al., 2006). Serial sections of embedded neurons were placed on formvar-

coated slot grids and viewed using an electron microscope (Phillips CM10).

Images were acquired using a 1392 3 1040 cooled-CCD camera (Roper Sci-

entific). Synapses and neuronal processes were reconstructed using graphics

software (Xara Xtreme) to establish the precise spatial arrangement of axons

and dendrites. Photoconverted vesicles have a dark lumen and could be read-

ily distinguished from unstained vesicles using previously described methods

(Darcy et al., 2006). For consistency with the fluorescence measurements, the

ultrastructural measure of pr difference was restricted to synapses <10 mm

apart (the 90% confidence interval of synapse separation found for the fluores-

cence-based analysis). 3D reconstructions of processes and presynaptic ter-
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minals were made using specialist software (‘‘Reconstruct,’’ J. Fiala, available

at http://synapses.bu.edu).

Activity Manipulations

For long-term manipulation of activity, cells were placed in a custom-made

chamber and stimulated (2 ms, 5 V pulses, 1–2 Hz field stimulation) while main-

taining the culture in the incubator. When required, drugs were added to the

culture medium (20 mM CNQX, 50 mM APV, 20 mM bicuculline). All data were

obtained in parallel on treated and age-matched sister control cultures.

Statistics

To compare data sets, nonparametric tests (Mann-Whitney U test, Wilcoxon

rank sum test, or c2 test) were used unless otherwise indicated. Tests for nor-

mality and comparisons of distributions were made using Kolmogorov-Smir-

nov tests. Pearson r test or Spearman r test was used for correlation analysis.

Monte Carlo simulations were done by random sampling the theoretical distri-

bution fit to the data. Statistical significance was assumed when p < 0.05. In

figures, *p < 0.05, **p < 0.01, and ***p < 0.001. Values in text represent

mean ± SEM for normally distributed data and median and interquartile range

(IQR) for data that did not meet the criteria for normality.

SUPPLEMENTAL DATA

Supplemental Data include eight figures and can be found with this article

online at http://www.neuron.org/cgi/content/full/59/3/475/DC1/.
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