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Häusser, Eds. (Oxford Univ. Press, Oxford, 1999), pp.
161–192.

91. V. M. Sandler, J. G. Barbara, J. Neurosci. 19, 4325
(1999).

92. N. Emptage, T. V. Bliss, A. Fine, Neuron 22, 115
(1999).

93. T. Nakamura, J. G. Barbara, K. Nakamura, W. N. Ross,
Neuron 24, 727 (1999).

94. J. Eilers, A. Konnerth, Curr. Opin. Neurobiol. 7, 385
(1997).

95. R. Yuste, W. Denk, Nature 375, 682 (1995).
96. W. Denk, M. Sugimori, R. Llinas, Proc. Natl. Acad.

Sci. U.S.A. 92, 8279 (1995).
97. Z. F. Mainen, R. Malinow, K. Svoboda, Nature 399,

151 (1999).
98. R. Yuste, M. J. Gutnick, D. Saar, K. R. Delaney, D. W.

Tank, Neuron 13, 23 (1994).
99. J. Eilers, G. J. Augustine, A. Konnerth, Nature 373,

155 (1995).
100. D. B. Jaffe et al., Nature 357, 244 (1992).
101. H. Markram, P. J. Helm, B. Sakmann, J. Physiol.

(London) 485, 1 (1995).
102. J. Schiller, F. Helmchen, B. Sakmann, J. Physiol.

(London) 487, 583 (1995).
103. V. Lev-Ram, H. Miyakawa, N. Lasser-Ross, W. N.

Ross, J. Neurophysiol. 68, 1167 (1992).

104. C. Koch, A. Zador, J. Neurosci. 13, 413 (1993).
105. K. Svoboda, D. W. Tank, W. Denk, Science 272, 716

(1996).
106. E. A. Finch, G. J. Augustine, Nature 396, 753 (1998).
107. H. Takechi, J. Eilers, A. Konnerth, Nature 396, 757

(1998).
108. S. S. Wang, G. J. Augustine, Neuron 15, 755 (1995).
109. S. S.-H. Wang, W. Denk, M. Häusser, Nature Neuro-
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R E V I E W

Untangling Dendrites with Quantitative
Models

Idan Segev and Michael London

Our understanding of the function of dendrites has been greatly enriched
by an inspiring dialogue between theory and experiments. Rather than
functionally ignoring dendrites, representing neurons as single summing
points, we have realized that dendrites are electrically and chemically
distributed nonlinear units and that this has important consequences for
interpreting experimental data and for the role of neurons in information
processing. Here, we examine the route to unraveling some of the enigmas
of dendrites and highlight the main insights that have been gained. Future
directions are discussed that will enable theory and models to keep
shedding light on dendrites, where the most fundamental input-output
adaptive processes take place.

It has been known since the beginning of the
20th century that the gray matter in our cortex
is composed mostly of dendrites, that com-
munication in cortical networks is made via
connections made on dendrites, and that den-

drites have exquisite shapes specific to dif-
ferent brain regions. It was thus for the last
100 years, and still is, very natural to wonder
“What do dendrites do?”

But alas, dendrites are thin (;1 mm in

diameter) and many of them are decorated
with thousands of even tinier “leaves”—the
dendritic spines. Until very recently, den-
drites were therefore inaccessible to direct
measurements and most of what we knew
about dendrites came from recordings made
from the relatively large soma (cell body).
Settling at the soma, however, was an unsat-
isfactory deal between the experimenter and
the concealing dendrites. The advantage is
that the soma is a stable recording site con-
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nected to the axon where the output, in the
form of action potentials, is typically gener-
ated. The disadvantage is that at the soma, the
view is very restricted because one sits far
from where the happening is, where synaptic
inputs play their music with the dendrites.

But then keen modelers demonstrated
that with the help of a good theory it is
possible to “peek” into the dendritic tree
from the soma, without actually visiting
them. This “virtual” visit provided critical
predictions that encouraged new experi-
mental studies and vice versa. In the last
“decade of the dendrites,” tremendous tech-
nical advances enabled us to start paying
intimate visits to dendrites, electrically, op-
tically and with molecular methods (1).
Models then became essential in providing
functional interpretations for the vast data
that emerged from these experiments. Here,
we review the role of theory in the progress
that has been made during the last 40 years
in understanding the electrical processes in
dendrites and in unraveling their possible
function. Dendritic research provides a ca-
nonical demonstration that theory and mod-
els, when closely linked to experiments, are
indispensable for forming a comprehensive
understanding of any complex biological
system.

Key Biophysical Insights Gained from
Reduced Models of Dendrites
Although modelers were well aware of the
richness of dendritic structures, dendrites were
neglected until the late 1950s. The assumption
was that functionally, the dendritic tree could be
represented as a single point where synaptic
influences are summed and, if this sum reaches
threshold, an output spike is evoked in the axon.
This “point-neuron” model served both as the
basis for the interpretation of experimental re-
sults as well as for analyzing the behavior of
neuronal networks.

In 1959, Wilfrid Rall (2) revived the in-
terest in dendrites by explicitly modeling
them as membrane cylinders connected to
each other to form a tree. As a first approx-
imation, the membrane of these cylindrical
core conductors was assumed to be passive.
Current flow in such trees was described by
the linear one-dimensional passive cable
equation (3),

l2
]2V~x,t!

]x2 2 tm

]V~x,t!

]t
2 V~x,t! 5 0 (1)

where V is the voltage difference across the
membrane, l 5 (rm/ri)

1/2 is the space con-
stant; ri (in ohm/cm) is the axial resistance;
rm (in ohm z cm) is the membrane resistance;
tm 5 rmcm, is the membrane time constant
(in s), and cm (in F/cm) is the membrane
capacitance. The mathematical challenge was
to solve this equation for arbitrary dendritic
geometries. The analytical solution enabled

Rall (2) to expose the significant effect of
dendrites on the electrical behavior of neu-
rons [reviews in (4–6 )].

Dendrites Shape the Voltage Response
at the Soma
The first surprise was that dendrites impose a
huge conductance load on the soma and, con-
sequently, a significant portion of the current
that is applied via an electrode to the soma
“escapes” into the dendritic tree. The result is
an enhancement of the charging (and dis-
charging) rate of the soma membrane, as
compared to the case of a soma without
dendrites. This removed the apparent discrep-
ancy between the behavior of transient poten-
tials measured experimentally at the soma
and the predictions from the “point-neuron”
model (see next section).

What do passive dendrites do to the tran-
sient current inputs that they receive via their
synapses? The cable properties of dendrites
(the rapid charging of their membrane capac-
itance) filter high temporal frequencies that
compose the postsynaptic potentials (PSPs).
In addition, a certain percentage of synaptic
current leaks out via the dendritic membrane.
As a result, the PSPs attenuate, are delayed
and their time course (shape) changes as they
spread from the dendrites to the soma. The
farther the input from the soma, the slower
the rise-time and the broader the resultant
somatic PSP (7–9). For fast PSPs, the peak
attenuation is expected to be severe (on the
order of 100-fold) and the peak should be
significantly delayed following propagating
from distal dendrites to the soma (10–12).
Indeed, it might take up to 1tm (5 to 50 ms)
for the peak of distal PSPs to reach the soma.
This temporal delay in the propagation of
dendritic EPSPs endows neurons with the
capability to compute the direction of motion
(13–15). In contrast to the large attenuation of
the PSPs peak, a substantial fraction of the
synaptic charge (on the order of 50% for
distal synapses) does reach the soma when
integrating over a duration of a few tm in
duration. The reason is that the intracellular
(axial) resistance of dendrites is substantially
smaller than the membrane resistance, so
only a relatively small percentage of the syn-
aptic charge is lost via the dendritic mem-
brane resistance. Thus, even in passive den-
drites, distal synapses are expected to affect
the output discharge at the axon.

Of particular importance were mathemat-
ical results showing that a whole class of
dendritic trees could be mapped into a single
equivalent cylinder (EC) coupled to a spher-
ical soma (16 ). This reduced (“ball-and
stick”) model captures the fundamental elec-
trical phenomena found in the original trees.
Specifically, the voltage response at the soma
is identical in the original tree and in the
corresponding EC, provided that the dendritic

input is a current source. With the EC, the
apparent complexity of the tree is captured by
only four key biophysical parameters, de-
rived from the original tree: (i) the cable
length L of the dendritic tree, in units of l; (ii)
the membrane time constant tm; (iii) the input
resistance at the soma end, Rin; and (iv) the
ratio between the input conductance of the
dendrites and that of the soma, r. This equiv-
alence emphasizes that what shapes the syn-
aptic response at the soma are these key cable
parameters rather than the fine details of the
dendritic morphology. Although real dendrit-
ic trees are not strictly equivalent to a single
cylinder, the main insights provided by the
EC approximation are relevant also to arbi-
trary branched passive trees.

The theoretical analysis also highlights
the electrical consequences of the detailed
geometry of the tree (17, 18). First, large
input impedance (and consequently large lo-
cal voltage change) is expected at distal thin
dendritic arbors (and distal spines), on the
order of gigaohms. Second, the attenuation of
the PSP strongly depends on the direction of
current flow leading to asymmetry in voltage
attenuation in the dendrites. Because of a
huge current sink (axial current “loss”) im-
posed by the rest of the tree on thin dendrites,
a very steep voltage attenuation is expected
from the distal synaptic input site to the soma
and it is generally shallower in the soma-to-
dendrites direction (Fig. 1, A and B). This has
important implications for the degree of in-
teraction between synapses locally in the tree
(the degree of electrical compartmentaliza-
tion) as well as for the spread of action
potentials backward from soma to dendrites
and forward from dendrites to soma [see
below and review in (1)].

Dendrites with Synapses: Regional
Nonlinearities and Electrical Scaling
Synapses are not current sources. Rather,
synapses impose a conductance change (open
ion channels) in the postsynaptic membrane,
thus altering the electrical properties of the
dendritic membrane. This hinders analytical
solutions for passive dendrites with synapses
[but see (19)]. Consequently, Rall (13) devel-
oped the compartmental modeling approach
to numerically explore nonlinear phenomena
in dendrites. User-friendly public domain
compartmental models for neurons were re-
cently developed (20–23) and are used by
experimentalists for interpreting their exper-
imental data.

One consequence of the conductance
change associated with the synaptic input is
that synapses interact nonlinearly with each
other. Compartmental models of passive den-
drites with synapses show that adjacent den-
dritic synapse tend to sum less linearly with
each other, unlike distant synapses which
tend to sum linearly (Fig. 1C). This sensitiv-
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ity to the spatial arrangement of synapses
implies that local nonlinear synaptic opera-
tions could be performed semi-independently
in many dendritic subunits (Fig. 1B) (14, 24 ).
Another consequence of dendritic synapses,
first highlighted by models, is that they can
effectively “re-scale” the cable properties of
the dendritic tree. When thousands of syn-
apses bombard the dendritic tree, the dendrit-
ic membrane becomes significantly “leakier”
and, consequently, the cable parameters of
dendrites change dynamically; Rin and tm

decrease with activity whereas L increases
(Fig. 1D).

In summary, synapses endow dendrites
with a dynamic flavor. Dendrites with syn-
apses constantly change electrically, modify-
ing their input impedance and altering their
electrical length like an accordion, in re-
sponse to the playing of the network they are
embedded in. The temporal resolution (sen-
sitivity to input synchronization, which de-
pends on the effective tm), and delay den-
drites that impose on their synaptic potentials
also change dynamically as a function of the
background synaptic activity. One can there-
fore view the “background” activity experi-
enced by dendrites as a “context” under
which the neuron operates. Different contexts
imply different interpretations of the same
input.

Dendrites with Voltage-Gated Ion
Channels: Exciting but Puzzling
Dendrites are populated with an amazing
plethora of voltage-gated ion channels, typi-
cally at a modest density. Some of these ion
channels are nonuniformly distributed over
the dendritic membrane surface (1). Experi-
ments show that these ion channels furnish
the dendrites with a rich repertoire of electri-
cal behaviors, from essentially passive re-
sponses, to subthreshold active responses, to
active backpropagation of the action potential
(AP) from the soma into the dendrites, to the
initiation of APs in the dendritic tree. Yet, we
have only begun to explore the properties of
the dendritic ion channels that are responsible
for these behaviors, properties such as their
density, spatial distribution, and kinetics. The
analytical extension of passive cable theory
for dendrites with nonlinear membrane is im-
possible in most cases and difficult for the
rest. As in the case of passive dendrites,
nonlinear cable theory [which is yet to be
developed; see (4, 25)] should highlight the
key parameters that govern the electrical be-
havior of active dendrites. Indeed, at these
early stages of systematic recordings from
dendrites, many uncertainties are obscuring
both the experimental and the theoretical pic-
ture of dendrites.

The most dramatic (nonlinear) effect of
excitable dendritic ion channels is the pres-
ence of dendritic action potentials, APs (1).

The theoretical challenge is to understand
how the interplay between dendritic morphol-
ogy, membrane excitability, and input condi-
tions govern the initiation and propagation of
APs in dendrites. Importantly, even in such
nonlinear trees, passive cable theory provides
key insights. In modestly excitable dendritic
trees, spike initiation is sensitively dependent
on the local input impedance (a passive mea-
sure) and on the degree of axial current loss
from the input site to other, not-yet-activated
(still passive), dendritic regions. This current
loss of the (already limited) excitable current
may be so large that the remaining depolar-
izing current is insufficient to regeneratively
excite the local dendritic membrane (26 ).

Passive cable theory shows how the input
impedance and axial current loss depend on
dendritic morphology (see above). In regions
with high input impedance (e.g., spine heads)
current threshold (the minimal input current
required for the initiation of excitation) is
expected to be small (because small input
current will produce large local depolariza-
tion). On the other hand, because thin den-
dritic arbors and spines suffer huge axial loss
of input current, the current threshold at these
sites is increased. It is the relative contribu-
tion of these two opposing effects that deter-
mine how current threshold changes in the
dendritic tree (Fig. 2A) (26–28).

The propagation of action potentials in the
tree is typically more secure toward distal
dendritic branches (“backward,” from soma
to dendrites); it tends to block while spread-
ing proximally. This is the direct result of the
asymmetry in voltage attenuation in passive
dendrites, as highlighted in Fig. 1, A and B
(1). A sufficiently strong local excitatory in-
put at distal excitable dendritic arbor is likely
to generate a regenerative response (and even
a full AP) in only a limited distal portion of
the tree. The relatively secure backpropaga-
tion may give rise to an interesting backward-
forward “ping-pong” game between the axon
and the dendrites, thus creating a “handshak-
ing” link—useful for both plastic and com-
putational processes—between dendritic syn-
apses and axonal output. This interaction be-
tween soma and dendrites also has an impor-
tant effect on network dynamics (28, 29).
Significantly, this complicated spatio-tempo-
ral nonlinear behavior can be captured by a
reduced model composed of only two (“so-
matic” and “dendritic”) compartments (Fig.
2C) (30–32).

Compartmental models of nonlinear den-
drites have been used to expose possible bio-
physical consequences of active channels in
dendrites. These models show that many of
the (apparent) constraints (e.g., attenuation,
relatively large integration time-window) in-
herent to passive dendrites could be over-
come with active dendritic channels. Some of
the ideas proposed included: active inward

Fig. 1. Fundamental insights from passive cable
theory. (A) Voltage response to a brief current
pulse in a simple branched dendritic model.
(Middle) Attenuation of voltage peak is plotted
for two cases; somatic input (blue) and dendrit-
ic input (red). The attenuation is asymmetric
and is much steeper in the dendritic-to-soma
direction (red). The voltage response at the
input site is much larger for the dendritic input
(large input impedance). (Bottom) Voltage
transient at the soma for somatic input (blue)
and dendritic input (red). The filtering effect of
the dendrite gives rise to temporal delay and to
an increase in half-width of the distal dendritic
input (17, 18). (B) Electrical compartmentaliza-
tion in passive dendrites. Current was applied
either at a distal dendritic site (top) or at the
soma (bottom) in a passive model of cerebellar
Purkinje cell. Voltage spread (the “territory of
influence”) is spatially more restricted for den-
dritic versus somatic input (red codes for peak
voltage at the input site). (C) Sublinear sum-
mation of synaptic inputs is less pronounced
(saturation is reduced) when the inputs are
distributed in different dendritic arbors (purple
trace at bottom) (13). (D) Background synaptic
activity dynamically rescales the cable struc-
ture of the dendritic tree. (Bottom) 10,000
excitatory synapses, randomly distributed and
asynchronously activated at two spikes per sec-
ond each (96, 97).
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current in dendrites may serve to (i) boost the
synaptic potential (33, 34 ), (ii) reduce the
location-dependence of the soma EPSP ex-
pected in passive dendrites (35, 36 ), and (iii)
introduce a submillisecond coincidence de-
tection mechanism by initiating a fast den-
dritic spike triggered by precise co-activation
of adjacent inputs on thin dendrites (37, 38).
Active outward current may (iv) linearize the
synaptic current by reducing saturation (39),
(v) scale the electrotonic structure and mod-
ulate the temporal resolution (integration
window) of dendrites in an activity-depen-
dent manner, thus changing the degree of
interaction among synapses (40) and (vi)
serving as a “shock absorber” by dampening
large local depolarizations generated either
by synaptic or by excitable currents (41).
Some of these theoretical ideas have been
validated experimentally [e.g., synaptic
boosting (42, 43) and coincidence detection
in dendrites (44–46 )]. Other ideas remain
controversial [e.g., mechanisms rendering
distal and proximal synapses equally effec-
tive at the soma (47 )].

An Inspiring Dialogue Between Models
and Experiments
Several classical successful cases established
the necessity for an intimate interaction be-
tween experiments and models. Experimental
application of cable theory confirmed that
dendrites are electrically distributed rather
than isopotential units. The transients record-
ed at the soma could be fitted by a sum of
several exponentials (48), rather than by one
exponential as expected in “point neurons.”
The time constants associated with these ex-
ponentials were “peeled” from the experi-
mental transients and used to improve esti-
mates for the membrane time constant, tm (5
to 50 ms) and for the cable length of den-
drites, L (0.5 to 2) (49). The EPSP shape
indices (rise-time and half-width) at the soma
were used for estimating the electrotonic dis-
tance, Xin, of the synaptic input in the den-
dritic tree. Redman and Walmsley (50) found
a remarkable match between the value of Xin,
estimated from the shape indices and that
calculated directly from the anatomical site of
connection. Unlike what is expected from
passive cable theory, in several neuron types,
EPSPs of distal origin (delayed and broad)
are similar in amplitude to EPSPs originating
at proximal sites. This implies that some
“boosting” mechanism (e.g., an increase in
the synaptic conductance as a function of
distance from the soma) compensates for the
voltage attenuation expected in passive den-
drites (47, 50).

The dialogue with experimentalists forced
theoreticians to further explore and refine
their models. The most groundbreaking ex-
ample is the computational study of the field
potentials in the olfactory bulb, which was

based on the gross anatomy of the bulb layers
and the distributions of the field potentials at
different depths of the bulb (51). Surprising-
ly, the model predicted mitral to granule cell
excitation followed by granule to mitral cell
inhibition. Electron microscopy (EM) con-
firmed the presence of reciprocal dendro-
dendritic synapses of opposite polarities be-
tween mitral and granule cells, dramatically
verifying the predictions of the model and
representing a triumph for theory.

Theory had particular impact on our un-
derstanding of the biophysics of the Lillipu-
tian dendritic spines (Fig. 2A) (52, 53). These
studies suggested that spines might act as
minute electrical and chemical compartments
involved in modulating synaptic efficacy.
This brought about a wealth of experimental
studies aiming at exploring whether spine
dimensions change dynamically (54 ) and
whether spines are indeed chemical compart-
ments (46 ). Two-photon microscopy now
makes it possible to optically image spines
and to show that these fascinating little thorns
with bulbous heads are indeed calcium com-
partments that may undergo activity-depen-
dent morphological changes (55, 56). Models
also show that the huge number of spines
(100,000 in a single cerebellar Purkinje cell),

which contribute significantly to the total
membrane area of dendrites, effectively in-
crease the cable length of dendrites and thus
affects their integrative properties (57 ).

Direct validation of the predictions of
passive cable theory became possible with
the use of paired recordings from the soma
and apical dendrite of pyramidal neurons.
The filtering effect of dendrites and direc-
tion-dependent voltage attenuation was as-
sessed in layer V cortical pyramidal cells
(12) but is less pronounced in CA1 pyra-
mids (58). Note that measurements of volt-
age attenuation have not yet been made
from large fractions of most dendritic trees
(the thin arbors) so that the steep voltage
profile predicted for inputs to thin arbors
(Fig. 1A) was not assessed experimentally.
The effect of the background synaptic ac-
tivity on the cable parameters was recently
confirmed in both in vivo and in vitro
experiments (59, 60). Finally, theoretical
ideas regarding the role of dendritic inhibi-
tion for computing the direction of visual
motion (14 ) have stimulated intense exper-
imental research aimed at exploring if, in-
deed, directional selectivity in cortical neu-
rons is associated with a significant synap-
tic shunt (61, 62).

Fig. 2. Fundamental insights for excitable trees. (A) Dendritic spines consisting of voltage-gated
(and/or NMDA-mediated) ion channels, in particular spines with thin and long necks, are favorable
sites for boosting the local excitatory synaptic input and for accumulation of calcium ions (red top
left spine) (37, 53). Spine morphology implies a significant attenuation of both voltage and for
calcium concentration from the spine head to the spine base (picture from Synapse Web, Boston
University, http://synapses.bu.edu/). (B) In excitable dendrites, a certain degree of spatial clustering
of excitatory synapses (top) may result in a significant boosting of the synaptic charge that reaches
the soma, because it produces larger local depolarization which may be sufficient for activating the
local excitable channels. As a consequent, the axon fires more vigorously (right). In both cases, 100
excitatory synapses were used; top, 10 clusters of 10 synapses each; bottom, clusters of 1 synapse.
Each synapse was activated 40 times/s for 1 s. The dependence of the axon output on the degree
of synaptic clustering in the dendrites could be used for implementing input classification task (34).
(C) Backward-forward “ping-pong” interaction between the axon and the excitable channels in
dendrites shapes the output pattern of spikes firing in the axon. Two models of a cortical pyramidal
neuron were used; one with passive dendrites (top) and the other with excitable dendrites (bottom)
[excitable model as in (31)]. For passive dendrites, the axon fires regularly in response to steady
soma depolarization whereas in the model with excitable dendrites it fires repeated spike bursts.
The geometry of the dendritic tree plays a crucial role in this “ping-pong” interaction, as
demonstrated using reduced two-compartment model [left column, see (30)].
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Dendritic Computation
The computer has become more than just
another metaphor for the brain, like other
human made devices in the past. The com-
puter is a unique machine in that it is univer-
sal. We believe that it can “simulate” any
other computation, discrete or analog, me-
chanical or biological (63). Moreover, as Tur-
ing so eloquently put it, mechanical simula-
tion of intelligence cannot be distinguished
from intelligence itself.

The Turing machine operates in an algorith-
mic fashion in which a series of simple opera-
tions relates a given input to a desired output.
Similarly, a series of operations are implement-
ed by the nervous system before the sensory
input is transformed to a desired behavioral
output. These operations can be characterized
as computations (64). Single neurons often re-
flect these operations; they show orientation
selectivity, velocity tuning, coding for spatial
location, and so forth. It is still largely an open
question what is the role of single neurons, and
in particular of their dendrites, in implementing
these neuronal computations, and whether the
algorithmic framework is natural for describing
the computations performed at the single-neu-
ron level.

What is clear is that dendrites and their
synapses transform the digital presynaptic
spike trains to an analog signal delivered to
the axon of the postsynaptic cell. The so-
phisticated nonlinear machinery that den-
drites possess could, in principle, be used
for performing nontrivial transformation
(computations) of their synaptic input. Ev-
idence for “low-level” processing in den-

drites, such as filtering, amplification and
coincidence detection of synaptic inputs,
have already been demonstrated (see
above). But are these dendritic processes
actually used for implementing a specific
computation? To answer this question, in
vivo recordings during the performance of
a specific computation are required.

Until very recently, in vitro recordings
from dendrite were rare, not to mention in
vivo recordings which were extraordinary
(65, 66 ). Thus, models were used to suggest
ways in which dendrite with their synapses
could, in principle, implement specific com-
putation. It was suggested that dendrites
could compute the direction of motion (13–
15) improve sound localization (24 ), provide
gain control (67 ) and perform a multidimen-
sional input classification task (68). Active
dendrites have also been shown to produce
spatial invariance, orientation tuning and bin-
ocular disparity visual responses [(69, 70)
and reviews in (71, 72)].

Recently, in a most impressive series of
experiments, in vivo recording from den-
drites was accomplished (73–76 ). Using
combined imaging and electrophysiological
methods, it is possible to infer the electrical
activity of large portions of the dendritic
tree. Of direct relevance to dendritic com-
putation is the study of Borst and col-
leagues (77– 81) on the processing informa-
tion in the fly visual system, where a pop-
ulation of large interneurons spatially inte-
grates the output signals of many thousands
of columnar neurons, each being sensitive
to a very small part of the visual scene.

These so-called tangential cells (TCs) are
all motion-sensitive: they become excited
by motion in one direction and are inhibited
by motion in the opposite direction. Using
both intracellular recordings as well as cal-
cium imaging from dendrites in vivo (Fig.
3B), Borst et al. discovered two major pro-
cessing steps implemented by the TC den-
drites. Through the processing of opponent
input elements having opposite preferred
direction, the direction selectivity of pre-
synaptic neurons is significantly enhanced
in the TCs. Models predict (Fig. 3A) and
experiments confirm (Fig. 3B) (78 – 80)
that dendritic filtering helps in distinguish-
ing a change in contrast due to stimulus
motion from changes due to purely local
patterns of the stimulus. The result of this
integration is a graded depolarization in the
axon of the cells; this depolarization repre-
sents information about image velocity
with high fidelity (Fig. 3) (80, 81). With
these in vivo experiments, a breakthrough
is at our door; and we should expect that
soon we will gain a deeper understanding
of the extent to which dendrites contribute
to the computations that performed by the
nervous system.

The Future of Dendrites
Dendrites and their spines are beginning to
surrender to the sophisticated optical and
electrical techniques that were developed in
the last decade. In the coming years we will
witness intense research into dendrites (and
probably also into axons) and their role in
information processing will be exposed.

Fig. 3. Computing with dendrites.
(A) A model of a TC neuron in the
fly visual system, activated by the
Elementary Motion Detectors
(EMD) array, in the preferred di-
rection of motion. (B) In vivo cal-
cium imaging from the dendrites
of TC-cell during motion of a pe-
riodic grating in the cell’s pre-
ferred direction. Calcium fluctu-
ates within individual dendrites in
response to both changes in local
contrast pattern as well as due to
motion of the whole pattern. Fil-
tering in the dendrites effectively
cancels out the responses due to
local patterns while retaining the
overall direction of motion. Fur-
thermore, to maximize efficacy of
input integration, the fanlike den-
dritic arbor is oriented so that
neurons sensitive to vertical mo-
tion have their fans aligned with
the dorsal-ventral axis, whereas
horizontally sensitive neurons
have their arbors arrayed orthog-
onally. Interestingly, the dendritic
mechanisms used for implement-
ing this computation (i.e., nonlinear summation of synaptic inputs, amplifications using voltage-dependent ion channels) where previously proposed on
theoretical grounds, but this is the first direct demonstration that they are indeed used to implement specific computation in dendrites. [Figure adapted from
(80).]
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Important theoretical issues are likely to be
encountered, three of which are highlighted
below.

In search of new analytical methods. Al-
though we can numerically simulate signal
processing in dendrites with nonlinear and
nonuniform membrane properties, we still
lack analytical tools for modeling such den-
drites. While key insights have been gained
from numerical exploration of excitable den-
drites, experience from passive cable theory
tells us that a comprehensive understanding
eventually comes from analytical approaches
(6, 82, 83). We thus hope that a new gener-
ation of researchers, equipped with powerful
mathematical tools, will join forces to analyt-
ically delve into dendrites.

Stability, plasticity and learning in den-
drites. Dendrites are highly dynamic and
plastic devices; their morphology (55) syn-
apses (84, 85) and ionic channels undergo
constant activity-dependent modulation (86 ).
What are the rules that govern these modula-
tions? How do dendrites continue to stably
perform their computational tasks in view of
these changes? Can we use tools from learn-

ing theory to quantify the capabilities and
limitations that dendrites have as a computing
and learning device? Although initial theoret-
ical work is under way (87–89), the road to
understanding how dendrites learn is still
largely uncharted.

Noise and information capacity of den-
drites. Models of dendrites are typically for-
mulated using deterministic equations, there-
by ignoring the different noise sources en-
countered by the input signals that impinge
on dendrites. These noise sources include
stochastic ion-channel noise, probabilistic
synapses, and massive “spontaneous” back-
ground synaptic activity (90–93). We still
lack a systematic characterization of the na-
ture and magnitude of the neuronal noise
involved, but we do have theoretical tools
from statistical estimation and information
theory to quantify the ability of neurons to
transmit information about their inputs
through their spike outputs in the presence of
noise (94 ). Indeed, information theory could
provide a unifying framework for assessing
the effect of the various neuronal modules
(synapses, dendrites, the axonal spike gener-

ation mechanism) on the encoding/decoding
capabilities of the neuron (Fig. 4) and (95). It
is hoped that within this framework, we will
be able to unravel the design principles by
which the dendritic machinery is used for
maximizing and stabilizing information
transmission in these fascinating building
blocks of the nervous system.
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R E V I E W

Signal-Processing Machines at the
Postsynaptic Density

Mary B. Kennedy

Dendrites of individual neurons in the vertebrate central nervous system
are contacted by thousands of synaptic terminals relaying information
about the environment. The postsynaptic membrane at each synaptic
terminal is the first place where information is processed as it converges
on the dendrite. At the postsynaptic membrane of excitatory synapses,
neurotransmitter receptors are attached to large protein “signaling ma-
chines” that delicately regulate the strength of synaptic transmission.
These machines are visible in the electron microscope and are called the
postsynaptic density. By changing synaptic strength in response to neural
activity, the postsynaptic density contributes to information processing
and the formation of memories.

Dendrites are the principal signal reception
and processing sites on vertebrate neurons.
The dendrites of each pyramidal neuron are
highly branched and contain thousands of
synapses made by axons from almost as
many neurons. Most of these synapses are
located on spines, which are tiny tubular or
mushroom-shaped structures about 1 to 3 mm
long and less than 1 mm in diameter that
protrude from the dendritic shaft (Fig. 1). The
typical presynaptic terminal forms a junction

with one, or at most two, postsynaptic spines.
Spines are the first processing point for syn-
aptic signals impinging on the dendrite.
Much of the processing machinery is con-
tained in a highly organized biochemical ap-
paratus attached to the cytosolic surface of
the postsynaptic membrane. This protein
complex is visible in the electron microscope
as a thickening of the postsynaptic mem-
brane, extending approximately 30 nm into
the cytosol; it was termed the “postsynaptic
density” or PSD by early electron microsco-
pists (Fig. 1) (1, 2).

Nearly all presynaptic terminals that make
synapses on dendritic spines release the excita-

tory neurotransmitter glutamate. The postsyn-
aptic membrane of a typical spine contains at
least two distinct types of glutamate receptors
concentrated at the site of contact with the
presynaptic terminal. a-amino-3-hydroxy-5-
methyl-4-isoxazolepropionate (AMPA)–type
glutamate receptors are ion channels that open
when they bind glutamate, allowing sodium
and potassium ions to flow across the mem-
brane, producing a small, brief depolarization
called the excitatory postsynaptic potential
(EPSP). N-methyl-D-aspartate (NMDA)–type
glutamate receptors are also ligand-gated ion
channels. However, opening of their larger
channel does not occur when glutamate binds to
it, unless the membrane is strongly depolarized
to relieve blockade of the channel by extracel-
lular magnesium. The required depolarization is
larger than can be achieved by AMPA receptors
at a single synapse. Adequate depolarization
can, in theory, be produced by coincident firing
of several nearby synapses or by a back-
propagating action potential (3). When the two
conditions of glutamate binding and strong
depolarization are met, the NMDA receptor
channel opens and allows the flow of sodium
and calcium ions into the cell. The resulting
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