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Structure, development, and plasticity of dendritic spines

Kristen M Harris

Dendritic spines are distinguished by their shapes,
subcellular composition, and synaptic receptor subtypes.
Recent studies show that actin-dependent movements take
place in spine heads, that spines emerge from stubby and
shaft synapses after dendritic filopodia disappear, and that
spines can form without synaptic activation, are maintained
by optimal activation, and are lost with excessive activation
or during degeneration.
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Abbreviations

AMPA  o-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid
CNQX  6-cyano-7-nitroquinoxaline-2,3-dione

D-APV  D-2-amino-5-phosphonovaleric acid

EM electron microscopy

LTP long-term potentiation

NMDA  N-methyl-D-aspartate

PSD postsynaptic density

SER smooth endoplasmic reticulum

TTX tetrodotoxin

Introduction

A diverse assortment of spine-like protrusions emerge
from dendrites [1°]. Most spines in the central nervous sys-
tem have stubby, thin, mushroom or branched shapes [2,3].
Multi-lobed structures called ‘thorny excresences’ have
one or more synapses on each lobe and are present, for
example, on proximal dendrites of hippocampal CA3 pyra-
midal cells [4]. Dendritic spines are present at the squid
giant synapse [5], suggesting that they may have devel-
oped early in the evolution of the nervous system. We are
only just beginning to understand how the structure, for-
mation, and plasticity of relatively simple dendritic spines
can influence synaptic function, and it is some of these
advances that I will discuss in this review.

Dendritic spine structure

Dendritic spines are the primary postsynaptic targets of exci-
tatory glutamatergic synapses in the mature brain. Even
simple spines .have remarkably diverse structures. They
range in volume from less than 0.01 um? for small thin spines
to 0.8 um3 for large mushroom spines (Figure 1) [6,7].
Dendritic spines and synapses of different sizes and shapes
occur on the same dendrite (Figure 1a). Similarly, a single
presynaptic varicosity can form synapses with two or more
spines of different dimensions [8,9]. Hence, spine structure
is not completely determined by either the presynaptic or
the postsynaptic cell.

Spine synapses have a thickened postsynaptic density
(PSD), which occupies about 10% of the spine surface
[6] (see Figure 1b—d). The PSD ranges from a simple
disc shape on smaller spines (Figure 1b,c) to a highly
irregular shape on larger spines (Figure 1d). Many struc-
tural, receptor, and signaling proteins are anchored in the
PSD [10°,11°]. The AMPA class of glutamatergic recep-
tors are preferentially located in larger PSDs of
hippocampal spines [12°°]. Cell-cell adhesion junctions,
which contain distinct structural and signaling mole-
cules, are present at the edges of about half of the PSDs
and also between spines and neighboring astrocytic
processes [13°]. Like the molecules of the PSD, those of
the cell adhesion junctions modulate synaptic transmis-
sion and plasticity [14,15,16°].

Dendritic spines are further distinguished by their compo-
sition of subcellular organelles [17]. For example, about
50% of all hippocampal spines contain smooth endoplas-
mic reticulum (SER) (Figure 1c), which is specialized to
form the ‘spine apparatus’ in 80% of the large spines
(Figure 1d). Some spines contain smooth and/or coated
vesicles, multivesicular bodies [17], or polyribosomes
[18,19]. Thus, remodeling of synaptic structure via inser-
tion of postsynaptic vesicles [20] or via new protein
synthesis could take place in or near spines, and degrada-
tion could be initiated in spines via the endocytic pathway.

Differences in spine structure can be important for synap-
tic integration and molecular compartmentalization [21].
Both of these functions are especially sensitive to the
length and diameter of the spine neck. Theoretical model-
ing shows that a thinner and longer neck results in greater
depolarization of the spine head for a given synaptic input.
Depending on the exact configuration of receptors and
voltage-dependent channels, the effects of this property
can range from strengthening a particular synapse [22°°] to
recruiting neighboring synapses in a coordinated depolar-
ization of the dendrite [21]. Similarly, imaging shows that
the degree to which calcium is elevated in the spine inde-
pendently from the dendrite is influenced by spine shape
[23,24]. A small calcium signal in a spine can be amplified
by an inositol-trisphosphate-dependent release of calcium

‘from the SER. This effect is restricted to neighboring

spines along a short dendritic segment [25°°,26°°].
Limiting the spread of. calcium-may provide both input
specificity for the activated synapses and neuroprotection
for the dendritic shaft and soma, where high concentra-
tions of calcium can lead to microtubular breakdown,
dendritic swelling, and other degenerative consequences
of calcium-induced excitotoxicity [6,27,28].

Rapid fluctuations in spine structure have been visualized
by staining their actin-based cytoskeletons in cultured
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Figure 1
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Dendritic spines in the mature rat
hippocampus. (a) Three-dimensional
reconstruction of a spiny dendritic segment
from hippocampal area CA1. This segment is
7 um long and has 25 spines, three of which
are branched (one with three heads and two
with two heads), making a total of 29 spine
heads. Depicted here are electron
micrographs of longitudinally sectioned
dendritic spines showing a representative

(b) stubby spine, (c) thin spine, and

(d) mushroom spine. The small black arrows
in (b—d) point to the postsynaptic density
(PSD). In (c), smooth endoplasmic reticulum
(SER) enters from the parent dendrite into the
spine neck, and on adjacent serial sections,
the SER continues into the spine head. The
arrowhead in (c) indicates where an astrocytic
process (Ast) abuts the synapse on the spine
head. In (d), the PSD on the mushroom spine
is perforated (P) by electron lucent regions
where only the plasmalemma is visible. About
80% of mushroom spines contain a spine
apparatus (SA), which has stacks of SER with
dense-staining fuzz between them. The SER
of the SA is also connected to SER in the
parent dendrite. DEN, dendrite.

hippocampal neurons [29°]. The movements are mediat-
ed by changes in the degree of actin polymerization
secondary to changes in the level of internal calcium; and
compounds that interfere with actin polymerization pre-
vent these movements [29°]. The images suggest that the
spine heads change shape, without much change in the
length or volume of the spine. This movement might also
reflect an actin-based movement of molecules or
organelles within a relatively stable spine membrane.

Dendritic spine formation

Dendritic spines are absent prior to the formation of
synapses. Filopodia extend and retract from both den-
drites and axons during early stages of synaptogenesis
[30,31]. Serial electron microscopy shows that some of
the filopodia have synapses at their tips, along their
lengths, and at their bases [32°*]. Dendritic filopodia
recede and are replaced by synapses on dendritic shafts
and stubby spines both in hippocampal cultures iz vitro
[33] and after the first postnatal week in vivo [32°°].
Later, synapses on dendritic shafts and stubby spines
decrease, and synapses on thin and mushroom dendritic
spines emerge to become the dominant forms in adults
[32°°,34]. Many of the early synapses are postsynapti-
cally silent, having only NMDA (and no AMPA)
glutamatergic receptors [12°°,35,36°,37]. Thus, filopodia

only appear when a relatively wide extracellular space
must be traversed for dendrites and axons to come into
apposition, as is the case in dissociated cell culture,
organotypic slices and developing neuropil. Filopodia do
not provide lasting support for synapses, instead, they
appear to guide nascent synapses to dendritic shafts from
which spines mature (Figure 2). A lack of spine matura-
tion, specifically the absence of filopodial retraction, is a
common feature of conditions leading to severe mental
retardation [38°,39].

New dendritic spines are also generated on mature neurons.
One hypothesis has been that new spines form through the
perforation and splitting of existing synapses [40°]. Such a
process would provide new release sites, for example, dur-
ing hippocampal long-term potentiation (LTP) [41].
However, two lines of evidence argue against this hypothe-
sis. First, branched or ‘splitting’ spine heads do not share the
same presynaptic axon and thus could not arise from a sin-
gle preexisting spine synapse. Second, perforations in the
PSD appear to result from the disassembly or movement of
adhesion molecules that span the synaptic cleft [42], in
order to accommodate insertion of presynaptic vesicles dur-
ing synaptic transmission [43°]. Thin evaginations from the
spine, called spinules, appear to be engulfed by the presy-
naptic axon, especially when vesicular release is elevated.
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Sequence of synaptogenesis onto hippocampal dendritic spines.
Recently, there has been considerable speculation about how dendritic
spines are formed and whether filopodia are direct precursors of
dendritic spines or whether there is an intermediate stage involving
shaft and stubby synapses [32°%,52°]. (a) Serial EM analyses from
hippocampus in vivo show that during the first postnatal week
(PNW1), more than 70% of the synapses occur directly on the
dendritic shafts or at the base of the filopodia (gray shading )[32°°].

About 25% of the synapses occur directly on filopodia [32°*] and
many filopodia have no synapses. (b) Serial EM also shows that as
synapses double during the second postnatal week (PNW2), more of
the synapses occur on stubby protrusions from the dendrite
[32°+,34,63°]. (c) Finally, with maturation, there is another doubling of
synapses, most of the shaft and stubby synapses disappear, and
dendritic spines emerge as the predominant site of excitatory
synapses [34].

Thus, spinules may be involved in removal of postsynaptic
membrane in parallel with presynaptic endocytosis. Rather
than generating new synapses, this process could coordinate
and maintain pre- and postsynaptic structures.

In the mature brain, spines may arise from shaft synapses,
such as during development. Alternatively, emerging den-
dritic filopodia would encounter suitable presynaptic
partners at short distances in the compact mature neuropil,
and therefore never reach the lengths seen during develop-
ment, and thus may not be recognized as filopodia. Most of
these new spines make synapses with axonal varicosities that
already have other synapses on them, giving rise to multiple
synapse boutons [44-46]. For example, during the estrous
cycle of mature female rats, new spines emerge cyclically,
with a concomitant increase in multiple synapse boutons
([45]; see also Woolley, in this issue, pp 349-354). In hip-
pocampal slices from mature male rats, there is a parallel
increase in spines and multiple synapse boutons [46]. These
findings suggest there are multiple sites on mature presy-
naptic boutons that can support synapses, and that spines
need only to ‘discover’ these sites for new synapses to form.
Such a process would be quite efficient, not requiring a coor-
dinated 4 novo formation of both pre- and postsynaptic sites.

Dendritic spine plasticity
Recent electrophysiological studies suggest that neurons
maintain an optimal level of total synaptic input by

increasing synaptic strength when activation is low and
decreasing synaptic strength when activation is high [47].
One way this could be done is through activity-dependent
changes in the receptor composition of existing synapses
[48]. Another way is to regulate the total number of active
synapses. To define synaptic ‘activity’ is difficult because dif-
ferent synaptic receptors and channels cause varying degrees
of postsynaptic depolarization or induction of signaling cas-
cades. Furthermore, a particular experimental treatment may
have different effects depending on the developmental, hor-
monal, and activation history of a particular neuron (see also
the review by Woolley, in this issue, pp 349-354).

Blocking release of neurotransmitter from developing
retinal ganglion cell axons with tetrodotoxin (TTX),
results in a threefold increase in the number of putative
dendritic spines on neurons in the lateral geniculate
nucleus [49]. Similarly, inhibiting the NMDA receptor
with D-2-amino-5-phosphonovaleric acid (D-APV) results
in more than a sixfold increase in putative spines on neu-
rons of the developing lateral geniculate nucleus ([50];
see also [51]). A recent study suggests that localized
synaptic activation can induce outgrowth of dendritic
filopodia or spines only in the immediate vicinity of the
activation, which is blocked by D-APV ([52°]; see also
Note added in proof). These results suggest that imma-
ture dendrites have more protrusions when the neurons
have less global synaptic activation or when there is an
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increase in local activation. The global effects may also
indicate a developmental arrest in the filopodial state.

There are 40-50% more spines in mature hippocampal
slices than in the hippocampus iz vive. This increase takes
place by the end of a 1 to 2 h recovery period after slicing, a
period during which neurons are less responsive [46].
Electron microscopy reveals that the new spines have
synapses, and that the effect is specific to an increase in the
stubby and mushroom spines. If the mature hippocampal
slices are exposed to a combination of T'TX, D-APV, CNQX,
nimodepine, 0 mM calcium, and 8 mM magnesium, which
block synaptic transmission, the dendrites become even
more spiny than in control slices, or slices in which synaps-
es are repeatedly activated by electrical stimulation [53].
These findings suggest that mature hippocampal dendrites
become spinier when the neurons are less activated.

In organotypic hippocampal slice cultures from the rat, the
dendrites have a complement of dendritic spines that are
comparable to those present at postnatal day 15 7z vive,
with approximately equal numbers of stubby, thin, and
mushroom spines [34,54°*]. As in other systems, if the
presynaptic axons are cut and allowed to degenerate for
several days, the dendritic spines retract. However, if the
lesioned cultures are exposed to AMPA, the spines are
retained, suggesting that activation of this glutamatergic
receptor is sufficient to maintain dendritic spines in the
absence of a presynaptic input [54°°]. This hypothesis is
supported further by the observation that dendritic spines
in cultures are maintained if exposed for 2 days to TTX,
which only blocks action potentials, but retract if exposed
to botulinum toxin, which prevents all vesicular release
[54°*]. When the NMDA receptors are blocked with
MKS801, the dendrites develop more filopodia-like protru-
sions, suggesting a return to the more immature state [54°*].

Long-term potentiation (LTP) is an enduring enhance-
ment of synaptic transmission that could involve a change
in synapse number and structure [55]. Recent work shows
that overall spine and synapse number, shape, and size are
stable 2 to 4 h after inducing LTP, relative to control sites
in area CA1 of adult hippocampal slices [56°°,57°°]. Spine
number is also stable after many hours of brief episodes of
tetanic stimulation, repeated every 10 min, which also pro-
duces sustained synaptic potentiation [53]. These findings
suggest that TP need not be accompanied by a marked or
long-lasting change in spine and synapse number or struc-
ture. However, unequivocal answers about the role of
spine size in synaptic potentiation will require synapse-
specific anatomical markers to distinguish silent, active,
and previously potentiated synapses from those that were
potentiated by the experimentally induced L'TP.

Stronger activation of neurons results in spine loss.
Exposure of neuronal cultures to NMDA for just 5 min
causes a concentration-dependent loss of spines [58°°].
Spines in somatosensory cortical slices also retract after just

5 min of exposure to a calcium-free medium [59], which is
known to induce epileptiform activity in hippocampal neu-
rons unless magnesium is substantially elevated [60,61].
Chronic epileptic seizures iz vivo also result in the loss of
dendritic spines [62°].

Conclusions

Existing data suggest that more spines form when neurons
have less excitatory activation, are maintained by optimal
activation, and are lost when activation is too high, or if the
presynaptic axons degenerate. This pattern supports the
hypothesis that neurons may homeostatically regulate
input through spine number. It also suggests a second
important fact about dendritic spines. Extra spines that
form when excitatory neuronal activation is low can pro-
vide a morphological basis to support new synaptic
plasticity. Many open questions remain. For example, are
spines also formed 7z vive when excitation is low? How
soon after formation are spines activated and incorporated
into functional networks? Do the complementary process-
es of LTP and long-term depression preserve or eliminate
spines and synapses? Do spine and synapse number only
cycle over days, as during the estrous cycle, or over even
shorter times, such as a circadian period, which is accom-
panied by changes in neuronal activation?

Note added in proof

An interesting new paper [63°] was published, while this
review was in preparation, suggesting that highly
selective activation may trigger spine formation on
developing dendrites.
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