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Segmentation, and 3D Reconstruction
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Abstract— Neuroscientists have studied the relationship be-
tween nerve cell morphology and function for over a century.
To pursue these studies, they need accurate three-dimensional
models of nerve cells that facilitate detailed anatomical mea-
surement and the identification of internal structures. Although
serial transmission electron microscopy has been a source of such
models since the mid 1960s, model reconstruction and analysis
remain very time consuming. We have developed a new approach
to reconstructing and visualizing 3D nerve cell models from
serial microscopy. An interactive system exploits recent computer
graphics and computer vision techniques to significantly reduce
the time required to build such models. The key ingredients of the
system are a digital “blink comparator” for section registration,
“snakes,” or active deformable contours, for semiautomated cell
segmentation, and voxel-based techniques for 3D reconstruction
and visualization of complex cell volumes with internal structures.

I. INTRODUCTION

EUROSCIENTISTS study the relationship between neu-
ronal dendritic morphology and function by searching
for links between morphology and behavior and between
morphology and disease. Detailed morphological studies re-
quire accurate three-dimensional models of nerve cells that
facilitate anatomical measurement and identification of internal
structures. Neuronal dendrites and their protruding dendritic
spines can be seen with a light microscope (Fig. 1), but the
resolution is insufficient for detailed anatomical measurement
and the internal structures are not visible. The preferred
method for detailed measurement and study of internal
cell structure is 3D reconstructions from serial electron
microscopy, or serial EM (Fig. 2) [25], [24], [60], [70].
Reconstructions from serial EM have been produced almost
since the invention of the electron microscope. Initially, the
reconstructions were purely manual, but over the years they
have relied increasingly on computers. Even with current
computer-assisted techniques, the reconstruction of a 5 pm
dendritic segment with all of its spines and synapses, along
with the editing and quantitative analysis of the reconstructed
model, can take months of work. By contrast, the tissue
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Fig. 1. A hippocampal pyramidal cell with the soma and the dendrites (den)
visible. The axons are from other hippocampal cells that form synapses
with these dendrites. At higher magnification the dendritic spines are seen
protruding from the dendrite. Bars = 10 pm. (Reproduced from [23] with
permission from the publisher.)

preparation and EM photography take only a few days! It is
remarkable that so many neuronal reconstructions have been
made because “... the incredible investment in time and energy
necessary to reconstruct cells is nothing short of heroic” [60].

We are working towards a system that makes serial
reconstruction a less time consuming process. A complete
system would include the following five components: (1) rapid
image entry; (2) image registration; (3) image segmentation;
(4) 3D reconstruction and visualization; and (5) quantification.
Our work has not yet addressed rapid image entry or
quantification issues. Recent work indicates the possibility of
rapid, high quality image acquisition by equipping electron
microscopes with. CCD imaging devices [1]. In the next
section, we review the relevant neurophysiological motivation
of our work, including possible quantification goals.

The present paper addresses components (2), (3), and
(4). Specifically, we propose a new interactive approach to
reconstructing and visualizing 3D nerve cell models from
serial microscopy. Our prototype system exploits recent
computer graphics and computer vision techniques to reduce
significantly the time required to build the models. It features
a digital “blink comparator” for section registration, “snakes,”
or active deformable contours, for semi-automated cell seg-
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Fig. 2. An EM photomicrograph from a section of a rat hippocampus. The dendrite (den) is located in the center, and a large spine is protruding from its
right side. The mitochondrion (mc), microtubules (mt), some smooth endoplasmic reticulum (ser), and the synapse (syn) are indicated. Bar = 1 pm.

mentation, and voxel-based techniques for 3D reconstruction
and visualization of the 3D morphology of dendrites along
with their internal structures.

A. Neurophysiological Motivation

A nerve cell, or neuron, has four constituent parts: the
cell body (soma), the dendrites, the axon, and the presynaptic
terminal of the axon [31]. The soma is the metabolic center
of the cell, the dendrites are the receiving units, the axon
is the conducting unit, and the presynaptic terminals are
the transmitting units. The areas of contact between the
presynaptic axonal terminals of one cell and the dendrites of
another cell are called the synapses. Most excitatory synapses
are located at the end of protrusions on the dendrites, called
the dendritic spines (see Fig. 1).

In humans, the dendritic spines are lost or change shape
both with aging [15] and with diseases that affect the
nervous system, such as dementia [9], brain tumors [58],
Down’s syndrome [45], epilepsy [54], Huntington’s disease
[22], and alcoholism [16]. Detailed anatomical descriptions
of the synapses and dendritic spines will provide new un-
derstanding about their function, thus improving opportunities
for understanding the underlying causes and effects of these
diseases.

The dendritic spine is positioned so that changes in its
morphology could modulate the transfer of information from
the synapse to the dendrite [5], [69]. Direct physiological
study of the relationship between dendritic spine morphology
and function has been impossible because of their small
size. Several simulations with theoretical models have shown,
however, that small changes in morphology could change the
biophysical and biochemical properties of the spines [51],
[35]. Several laboratory studies have shown that dendritic
spines change shape during maturation, following experience,
and in response to direct physiological stimulation of the
presynaptic axon. Repeated, or “tetanic,” stimulation causes
an enhanced synaptic efficacy, which is referred to as long-
term potentiation (LTP), a leading candidate for a synaptic
explanation of behavioral learning [6]. Anatomical analyses of
stimulated dendrites have revealed swollen spines and changes
in the size of synapses (for a review see [24]). Thus, a change
in morphology might contribute to, or represent, the increase
in synaptic efficacy which is observed after stimulation.

Research has also shown that the cytoskeleton and the
organelles internal to the neuron, such as neurofilaments, mi-
crotubules, mitochondria, and smooth endoplasmic reticulum
(see Fig. 2) may control the shape of the nerve cell [36]. The
challenge is to find links between neuronal morphology and
physiological function in the normal and diseased brain [5].
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B. Previous Work

This section reviews prior work on registration, reconstruc-
tion, segmentation, and visualization that is relevant to our
research.

Registration and Reconstruction: Early EM reconstruction
techniques were entirely manual [59]. A photograph from
an electron microscope was illuminated and the outline of
the structures of interest were traced on a sheet of acetate
positioned on top of the print. Next a photograph of an
adjoining section was illuminated and aligned with the trace
from the previous section, and its structures were then traced
on a new sheet of acetate. This process was repeated for all
sections. The thickness of the acetate and the magnification
were chosen so that a fairly accurate model would result by
inserting a number of blank sheets of acetate between each
trace. Finally, an artist would produce a 2D illustration of the
3D model.

Over the years, reconstruction from serial EM has become
increasingly computer assisted. In a system developed by
Stevens et al. [59], [60], the EM negatives are first repho-
tographed onto a 35 mm filmstrip. Next, the filmstrip is
mounted on a film transport, which in turn is mounted on
a stage driven by two computer-controlled stepping motors.
The first image is digitized and stored in image memory. The
second image is continually digitized while the user moves the
film transport, and a video switcher alternately displays the
stored and “live” images on a graphics screen at a frequency
of about 4 Hz. There is an illusion of movement when the
images are misaligned, and the movement is reduced as they
are brought into alignment. When the motion is minimized
between the two images or features of interest, the second
image is stored. Next, serial sections two and three are aligned,
followed by pairwise alignment of the remaining sections.
Once all the images are aligned, the features or boundaries of
interest are traced manually using a bitpad. The traces can be
displayed as a set of contours, as contours with the hidden
lines removed, or tessellated to form a surface which can be
displayed as a solid object [26].

Using motion to compare photographs of the same or similar
objects is not a new idea. Astronomers have used blink
comparators since early this century to study astronomical
plates [12]. A blink comparator holds two plates of the same
part of the sky, and alternately displays them to the user.
Stationary objects such as stars remain fixed, but objects such
as comets or planets appear to move.

The problem of image alignment appears in many disci-
plines. Cartographers need to align aerial photographs, and
in robot vision much effort is devoted to registration of
stereo pairs and temporal image sequences [28]. In both
these disciplines, the images are different views of the same
object, and in robot vision one can often assume that,
at least locally, images are only misaligned translationally.
The alignment of neural sections, however, is a consider-
ably more difficult problem because the EM images are
misaligned both translationally and rotationally and there is
generally a large discrepancy between consecutive images.
The latter is due both to the integration over the thickness

of the section in the EM photographic process and to
distortions of the tissue by its preparation and by the EM
process.

In addition to manual alignment techniques, such as the
one described above for aligning neural slices, automatic
registration methods based on cross correlation, control points
(or landmarks), and moments are commonly applied to
biomedical image registration [7]. Cross correlation and
moment based techniques often require feature extraction
through manual or automatic means, and control point based
techniques often require manual identification of the control
points. Cross correlation has been used to register retinal
images [7] where edges of common features in adjoining
images are employed in the correlation process. Giertsen et al.
[21] proposed a method to align electron micrographs which
uses both control points and moments. They manually trace
the membrane and internal substructures of a pancreatic cell
in serial sections and specify connectivity relations among
successive contours. Using contour shape features (centroids
and mean radii), they determine linear transformations between
successive contours and refine the alignment using residuals
between the original and smoothed data.

The registration of neural micrographs does not lend itself
well to cross correlation or moment based techniques. One
must use the entire section for registration in order to
avoid overcompensating for structural changes in the dendrite
between sections and for distortions introduced by the tissue
preparation process. However, the dendrite, the object of
interest, covers only a small area near the center of the
neural section. Consequently, features required for correlation
which may not be of interest during reconstruction would need
to be extracted prior to registration. Unfortunately, existing
automatic segmentation techniques experience difficulty in
reliably extracting useful features from neural micrographs.
Furthermore, there are no suitable landmarks in adjoining
sections to provide exact correspondence. The semiautomatic
method described by Giertsen er al. [21] would appear to
require more effort than our manual approach to alignment,
since we can limit segmentation to the object of interest and
we can take advantage of the frame-to-frame coherence in the
registered images during segmentation.

Segmentation: Many techniques have been developed for
2D and 3D biomedical image segmentation, and they may
be categorized into statistical classification methods, region
growing methods, and boundary methods. The simplest
classification method, intensity thresholding, was employed
in [29], while more sophisticated Bayesian estimation was
applied in [13]. These techniques work relatively well for
separating soft and hard tissue in CT scans. Region-based
segmentation methods include multiresolution techniques
such as those developed in [40], [18], [67]. A simple
boundary-based method is iso-surface approximation. An
example is the marching cubes technique [44], which
constructs 3D polygonal representations of constant density
surfaces from volumetric data by generating polygonal
patches in a 3D grid using a table that classifies the
14 types of intersections that can occur between the iso-
surface and cubes in the grid. Other boundary segmentation
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techniques perform edge detection using various 3D edge
detectors (e.g., [43], [48], [73], [30], [29]). A more
sophisticated approach to segmenting MR scans proposed
by Sander and Zucker [53] fits local quadric patches
to Zucker-Hummel 3D operator responses using iterative
optimization.

Unfortunately, because of the complexity of EM images
of neuronal tissue (see Fig. 2), straightforward segmentation
using any of the aforementioned techniques does not appear
promising for 3D reconstruction of dendritic models. There-
fore, we aim at introducing a higher level of automation into
the section-by-section manual tracing methodology currently
practiced by neuroscientists. A model-based image feature
localization and tracking technique known as snakes [32] is
well suited to this goal. Snakes are dynamic models that differ
substantially from more mundane contouring approaches.
Snakes are attracted to image boundaries through forces, which
not only reduces the contouring time, but also increases the
accuracy of the tracing.

The ability of snakes to conform to complex biological
shapes such as cells and to track their nonrigid deformations
across image sequences makes them attractive tools for
biomedical image analysis. In [39], snakes are used to
track living cells moving on a planar surface. Assuming
modest interframe motion, snakes can exploit frame-to-frame
coherence to track the moving cell and also follow the
deformations which occur as the cell moves. Ayache et al.
[2] use snakes to find edges in cross sections of MR data.
The user draws an approximate contour around the region
of interest and the snake deforms to fit the regions more
accurately. Once the snake has reached an equilibrium, it is
used as a starting point for the next cross section. A 3D model
is built from the resulting set of contours using Delauney
triangulation [3]. Variations on snakes based on B-splines
have been applied to the segmentation of 3D CT and MR
data [37]. Other model-based CT and MR data segmentation
methods closely related to snakes include the Fourier curve
models proposed by Duncan ef al. [14] and the deformable
templates of Lipson, Yuille, et al. [42].

Visualization: Volume visualization is used in applications
in various disciplines, such as medicine, geophysics, molecular
biology, atmospheric research, and industrial inspection [65].
Much work has been devoted to high-quality rendering of
CT, PET and MR data [13], [38], seismic data [52], [72],
and cellular microscopy data ([56], [33], [4]. Specialized
software and hardware has been developed to facilitate
real-time manipulation of both medical data [46], [47] and
seismic data [10]. More recently, general-purpose software
for volume rendering has become available. Examples are
ISG Technologies’” ICAR™ System [61], the SYNU sys-
tem from San Diego Microscopy and Imaging Resource
[27], Advanced Visual Systems’ AVS™ system [66] and
Vitallmages’ VoxelView™ system [68]. Here, we used the
VoxelViewT™™ gsystem on a Silicon Graphics 4D/210GTX
workstation to visualize the 3D reconstructed dendrites.
We are also using an experimental ray-tracer implemented
on a Digital Equipment Corporation DECmpp™ 12000/Sx
massively parallel computer.
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II. RECONSTRUCTION OF NEURONAL DENDRITES

A. Data Acquisition

Using routine tissue processing, a slice (400 pm thick) of
well-preserved hippocampus was obtained from the brain of a
male rat, and the slice was embedded in epoxy resin. The slice
was further sectioned with an ultramicrotome, at an average
section thickness of about 0.06 pm. (The dendritic segment
used in this paper is dendrite number 24 of reference [26]).
Each section was photographed at 10,000 times magnification
in a JEOL 100B transmission electron microscope and printed
on 8 x 10 inch photographic paper (see Fig. 2).

The EM photomicrographs were digitized on an ECRM
Autokon flat-bed laser scanner capable of digitizing reflection
copy images at a wide range of resolutions [64]. The scanner
has a fixed spot size and the intensity can be quantized at
one or eight bits/pixel. We digitized the images at a resolution
of 2,560 x 1,983 pixels, approximately twice the sampling
rate of the smallest features of interest, and with eight bits
of intensity per pixel. The images were low-pass filtered and
subsampled to a size of 640 x 496 pixels.

B. Image Registration

We chose a manual approach to image registration for
two reasons. First, the automatic alignment of successive
EM images is a very difficult problem, because the images
are displaced both translationally and rotationally and usually
there is a large disparity between consecutive images. Second,
even if an automated solution can be found, user intervention
will be necessary when the tissue has been distorted during
preparation; for example, when a section has a fold.

We have implemented an interactive digital blink com-
parator. One image is held stationary and the user translates
and rotates the other image while the stationary and moving
images are alternately shown on a graphics screen. The user
can translate the image in the z- and y-directions and can
rotate the image about its center by using a three-button
mouse, each button controlling one type of motion. The user
moves the image until the motion between the two images is
minimized and the images are aligned. By precomputing z-
and y-components of the composite transformation, we obtain
comparisons at a frequency of about 2.5 Hz for a 640 x 496
pixel image on a DECstation™ 5000/240HX. We found this
frequency adequate to obtain good alignment.

When all images are aligned by pairs, we find the composite
rotation and translation transformation for each image relative
to the first image in the EM series and resample the images
using a spatially varying digital shift filter.

From sampling theory we know that in one dimension the
impulse response of the ideal shift, or interpolation, filter is
sin(mw(m —T))/n(m —T), where m ranges over the sampling
points, and T is the delay or, in our case, the fraction of a pixel
[71]. Since this filter is of infinite duration, we window the sinc
function with a raised cosine: 0.5+ 0.5 % cos(2 7m)/(L + 1),
where |m| < (L — 1)/2, and L is the width of the window.
(The raised cosine is sometimes referred to as a Hanning
window [49] or a Hanrn window [71].) In order to select
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a suitable L, we plot for several values of L the frequency
response magnitude and phase for both the ideal shift filter and
the finite duration impulse response (FIR) filter. We choose a
value for L which gives good agreement between the desired
frequency response and the actual frequency response in both
magnitude and phase. '

The two-dimensional filter used for resampling is the
cascade of two one-dimensional FIR filters, with the horizontal
filter interpolating in the z-direction and the vertical filter
interpolating in the y-direction. Since this filter can give values
that are outside the range of the input data, including negative
values, we rescale the resampled image to the range [0, 255].
The resulting registered, resampled, and rescaled images are
input to the segmentation process described in the next section.

C. Extracting Models from Electron Micrographs

The extraction of neuronal dendrites from a set of aligned
EM images reduces to three subproblems: (1) the localization
of dendritic profiles in digital micrographs; (2) the segmen-
tation of the interiors of dendrites bounded by profiles; and
(3) the identification of profiles of the same dendrite across
serial micrographs. The density and geometric complexity of
neuronal features in micrographs make the first and third
subproblems especially difficult to automate fully.

We take a semiautomatic approach which exploits physi-
cally based vision techniques for interactively localizing and
tracking extended features in images. We employ a variant of
snakes, the interactive deformable contour models introduced
in [32]. Snakes provide significant assistance to the user in
accurately locating the membranes that bound the dendrites
in EM images. Using a mouse, the user quickly traces a
contour which approximates the dendrite boundary, then starts
a dynamic simulation that enables the contour to locate and
conform to the true membrane boundary under the influence
of an image force field. Where necessary, the user may guide
the contour by applying simulated forces using the mouse.
Through minimal user intervention, snakes quickly produce
accurate dendritic profiles in the form of complete, closed
contours that facilitate the segmentation of dendritic interiors.
Finally, with some guidance, snakes are able to exploit the
coherence between serial micrographs to quickly extract a
sequence of profiles of the same dendrite.

Deformable Contour Models: A snake can be thought of
as a dynamic deformable contour in the z-y image plane.
We define a discrete deformable contour as a set of n nodes
indexed by i = 1,...,n, with time varying positions x;(t) =
[z:(t),y:(t)]’. The behavior of an interactive deformable
contour is governed by the first-order dynamic system of
equations

dxi
dt

Y= toi+ B =1 i=1,...,n (D
where « is a velocity-dependent damping constant, c;(t) are
“tension” forces which make the snake act like a series of
springs that resist deformation, (;(t) are “rigidity” forces
which make the snake act like a thin wire that resists bending,

and f;(t) are forces in the image plane applied to the contour.

Let {; be the given reference length of the spring connecting
node 3 to node ¢+1 and let r;(t) = x;41 —X; be the separation

of the nodes. Given the deformation e;(t) = ||r;|| — l;, we
define
o = 0ici r; — Gi-16i-1 ri_1. 2
[l I|zi—al

It is convenient to create contours that can gradually stretch
or shrink in a viscoelastic manner under a sustained applied
force. A viscoelastic contour results from setting

dl;
Eﬁl— = vie; (3)
where v; is a coefficient of viscoelasticity.! To give the
contours some rigidity, we introduce the variables b; and
define rigidity forces

Bi = biy1(Xig2 — 2Xi41 + Xi) — 2bi(Xip1 — 2% + X-1)
+bi—1(x — 2%i1 + X-2). 4

Note that in the absence of external forces, if the nodes are
separated more than [;, are equally spaced, and lie on a straight
line, ;; and B; vanish and the contour will be at equilibrium.
Tension and rigidity are locally adjustable through the a; and
b; variables. In particular, by setting a; = b; = 0, we are
able to break a long deformable contour into several shorter
contours on an image.

To simulate the deformable contour we integrate the system
of ordinary differential equations (1) forward through time
using a semi-implicit Euler procedure [50]. Applying the
forward finite difference approximation dx;/dt ~ (x4t —
x!)/At to (1) and collecting linear terms in the x; on the left
yields the pentadiagonal system of algebraic equations

Yy Y
XN BT = xl ol 4] ®)
for the subsequent node positions x:t2* in terms of the

current positions x!. Since the system has a constant coefficient
matrix, we factorize it only once at the beginning of the de-
formable contour simulation using a direct LDU factorization
method and then efficiently resolve with different right-hand
sides at each time step (see [62] for details).

According to (3) we apply the viscoelastic update

IFAt = 1t 4 Atygel. (6)

To speed up the simulation, it suffices to increase »; and
perform the update only once every few time steps. Though
experimentation, we have found that the parameter values
a; = 1.0, b; = 0.5,y = 0.5, v; = 1.0, and viscoelastic updates
once every 5 time steps (At = 1 is assumed) yields a rapid,
stable simulation of deformable contours with appropriate
physical behavior for our application. After each simulation
time step we draw lines between the new node positions x4
to display the deformable contour as a dynamic curve in the
image plane.

!'Note that in [8] we employed deformable contours that stretch arbitrarily
but resist compression past their initial lengths. After much experimentation

in our application, we feel that viscoelastic contours perform better in our
application.
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Image Segmentation Using Deformable Contours: The de-
formable contour is responsive to an image force field which
influences the contour’s shape and motion. It is convenient to
express the force field as the gradient of a potential function
Pr,(z,y) computed from the image I.(z,y) of EM section s:

fi = VP (x;) @)

where V = [8/8z,0/dy]’. By simulating (1) with (7), the
ravines (extended local minima) of P, act as attractors to
deformable contours. The contours descend and stabilize at
the bottoms of the nearest ravines.

In the present application, we are interested in the local-
ization of cell membranes, which appear dark in positive
micrographs. We therefore convert I;(z, y) into a 2D potential
function whose ravines coincide with dark cell membranes:

P (z,y) = Go * I(z,y) 8

where G, denotes convolution with a 2D Gaussian smooth-
ing filter of width o. The filter broadens the ravines of FPr,,
so that they attract the contours from some distance away.

In practice, I, is not a continuous function, but a digital
image. Therefore, we first convolve the image with a discrete
smoothing kernel, then compute (7) by bilinearly interpolating
the smoothed image gradients evaluated at the four pixels
surrounding x;. The gradients are computed using forward
finite differences of adjacent pixel values. The user can set the
degree of smoothing ¢ and select the display of image I, or
potential functions Py, through a menu-driven interface.

The user initializes a closed deformable contour by quickly
sketching with a mouse an approximate trace around the dark
membrane of a dendrite of interest. Fig. 3(a) shows an initial
deformable contour sketched near a cell membrane (nodes are
created automatically so that they are spaced about one pixel
apart, and an additional spring is inserted between the first
and last nodes to close the contour). The user then initiates
the ;snake simulation (5). In a few simulation time steps the
deformable contour equilibrates at the bottom of the nearest
ravine in Py, (Fig. 3(b)). By interacting with the contour (see
below), the user can help it quickly localize the membrane
ravine and conform to its shape to produce an accurate profile
of the dendrite (Fig. 3(e)).

Because the dendritic profile is a closed continuous contour,
it is easy to segment the interior of the cell from the rest of
the image. We accomplish the segmentation by applying a
standard region-fill algorithm [17] which starts from a seed
point inside the profile and sequentially accesses the pixels
of I, that are bounded by the profile. Fig. 3(f) shows the
dendritic profile segmented from the EM image in Fig. 3(e).

User and Constraint Forces: Often the user will sketch an
initial trace which deviates too much from the membrane
ravine to descend into the ravine properly. This is the
case for the initial contour in Fig. 3(a) which reaches the
equilibrium configuration shown in Fig. 3(b). As can be seen,
the deformable contour may fall prey to nearby dark features
inside the cell (or to nearby features of neighboring cells)
which act as false attractors. In such a case, the user may
apply interactive simulated forces £™;(¢) by using the mouse
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to guide the deformable contour towards the ravine of interest
as it is stabilizing (see [32] for details about user forces). A
useful force is the interactive spring

. x; —m(t) if ||xi — m(2)||
7 = ;
0 otherwise.

is minimal for node i,

)

which pulls the nearest node towards the time-varying mouse
position m(¢) in the image plane. Fig. 3(c) shows the effect of
a user stretching the contour towards the right with an attached
interactive spring (green line) from the mouse position (blue
circle).

To localize a profile accurately, the user may want to
constrain points on a deformable contour by attaching them
with springs to selected anchor points on the image. Such
constraints prevent the deformable contour from straying far
from these points, regardless of the image forces and the
user’s other mouse manipulations. The mechanism for adding
constraints is simply to fix m(¢) = a; in the spring force (9)
to create an anchor point a; in the image. The constraining
spring then applies a force £**. Fig. 3(d) illustrates a constraint
spring (blue line) which pulls the contour back towards an
anchor point on the cell membrane as the user tugs on the
contour with an interactive spring (green line). Note the two
constraints (blue dots) in the final profile contour in Fig. 3(e).

Combining the three types of forces, we have

f; = i VP (%) + cnf™ + ca Zfiak
k

(10

where ), is a summation over all the anchor constraints
in force and where cy, cm, and c, are the strength factors
of the image forces, user spring forces, and anchor spring
forces. We have determined empirically that the parameter
values ¢y = 0.02, c; = 0.02, and ¢; = —0.002 with P,
quantized in the range [0, 255] yield stable behavior and rapid
convergence of deformable contours on cell membranes.

Exploiting Coherence Across Serial Sections: Our interac-
tive technique for extracting cell profiles from EM images
benefits from the fact that snakes can exploit the coherence
of profile positions and shapes across adjacent images. Often,
the user need not reinitialize the deformable contours when
progressing from image to image to extract adjacent profiles
of a dendrite.

Once the deformable contours equilibrate into the membrane
ravines in Pr, we replace this potential function with the
potential function Pr_, of an adjacent member of the
image sequence. Continuing from their previous equilibrium
positions, the contours automatically descend into the new
ravines to regain equilibrium, quickly localizing the new
positions of the cell membranes in the adjacent image and
conforming to their shapes.

This simple mechanism for exploiting image-to-image
coherence works so long as the perturbation is small enough
to maintain the deformable contours within the membrane
ravines as we switch to adjacent images. Should part of a
contour escape the ravine, however, the rest of the contour
will usually pull it back into place due to the elasticity of
the model.
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(e) (H

Fig. 3. Cell segmentation of the section in Fig. 2 using a deformable contour (see text). (a) Initial sketched contour. (b) Initial equilibrium position. (c)—(d)
Manipulating the contour with interactive springs (green lines) and constraints (blue lines). (e) Final profile. (f) Segmented cell.

Contour Bifurcation and Mergence Operations: As we To handle these situations efficiently, we have incorporated
progress through consecutive sections, the dendritic spines snake bifurcation and mergence operations that obviate snake
may become disconnected from the parent dendrite, or reinitializations. The user may split a closed snake into two
disconnected spines may merge with the parent dendrite. closed snakes and vice versa by simply using the mouse to
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(c)
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(d)

Fig. 4. Contour bifurcation and mergence (see text). (a) Snake to be bifurcated showing the two selected cut points connected by green line. (b) Bifurcated
snakes conforming to the membranes of the dendrite and the separated spine. (c) Two snakes to be merged showing the selected cut points connected by
green line. (d) Merged snake conforming to the membrane of the dendrite and connected spine.

select snake nodes. In the case where a spine separates from
the parent dendrite, the user selects two cutting points on the
snake (Fig. 4(a)) and the program automatically bifurcates the
snake into two snakes which close and separately proceed
to conform to their associated membranes (Fig. 4(b)). In the
case where a spine joins the parent dendrite, the user selects a
cutting point on each closed snake (Fig. 4(c)) and the program
automatically opens and merges the snakes into one closed
snake which proceeds to conform to the membrane boundary

(Fig. 4(d)).

III. VISUALIZING NEURONAL DENDRITES

During image segmentation, the user can visualize what
takes place in two graphics windows (Fig. 5). One window
shows the current EM image overlayed with the graphics
generated by the deformable contour simulation. The other
window displays a stack of dendritic profiles and their
interiors. The user can also see the current contour with
the (partial) model, thereby monitoring progress. The stacked
set of profiles and interiors can be rotated and viewed from

different vantage points. A deformable contour in one window
can be inserted as a profile into the other window and vice
versa. When all the dendritic profiles have been extracted, we
use the segmented dendritic interior to build a volumetric voxel
model. We apply volume rendering techniques to visualize the
volumetric model.

Volume rendering refers to the direct rendering of scalar
data sampled in three dimensions. These techniques differ
from traditional computer graphics techniques in that explicit
surfaces need not be extracted from the data before display.
Rather, the entire 3D volume of data is used for display. Yet,
by displaying only the portions of the volume that have a
given density or a high gradient, features and surfaces may be
elicited without explicit representation [17].

We use the VoxelView™ system [68] to reconstruct a 3D
volumetric model of a dendrite from the dendritic interiors that
have been segmented from the serial sections. The segmented
dendrite in each image is enclosed by a rectangular array of
black pixels. The resulting arrays, or images, are stacked in
order. The sizes of the rectangular arrays are chosen so that the
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Fig. 5.
profiles and their interiors. The active snake is displayed in red.

stack yields a rectangular parallelepiped. Since the sampling
rate is less in the stacking direction (z-direction) than in the
z- and y-directions of the images, the VoxelView™ system
linearly interpolates an additional number of sections. In the
examples shown below, we have reconstructed 41 sections of
a dendrite, and interpolated three sections between each pair of
original sections to get approximately the correct proportions
along the z-axis as we view all the sections.

By rapidly moving from one image to the next, we generate
an interactive “movie” that enables us to follow certain
features of interest through the dendrite. We can also slice
the stack of images along planes perpendicular to the stacking
direction, and along any arbitrary plane. Because of the tissue
cutting direction, the dendrite is positioned obliquely in the
image volume; therefore, we must cut the image volume
obliquely to slice the dendrite lengthwise. One such oblique
slice is shown in Fig. 6, where we can see the shape and
extent of the mitochondrion through the dendrite, and also
some smooth endoplasmic reticulum.

By default, the volume is rendered without any shading;
however, the user can specify the position of a light source
and obtain a shaded view of the model. In Fig. 7, we have
rendered the dendrite model with shading. The shading helps
accentuate the 3D shape of the dendrite.

For rapid volume rendering we also use a parallel ray-
tracer implemented on a DECmpp™ 12000/Sx massively
parallel computer. The ray-tracing algorithm differs from
previous methods [55] by holding the data stationary while
accumulating the opacity along the rays in parallel. The 3D
volumetric models can be interactively rotated and viewed
translucently. Fig. 8 shows a translucent ray-traced image of
the neuron model, which allows us to visualize how the mito-
chondrion extends through the dendrite. This model has been
reconstructed using fractional section interpolation in order to
obtain accurate proportions in the z-, y-, and z-directions.

(b)

The two visualization windows. (a) The current EM image with an overlayed active deformable contour (snake). (b) A stack of dendritic

Fig. 6. Oblique slice through the model of a dendritere constructed from the
41 EM serial sections. The mitochondrion can be seen extending through the
length of the dendrite and some smooth endoplasmic reticulum is visible in
the large spine. Note that this section is oblique to the original EM sections.
Therefore, this view is not present in the original data, but has been digitally
reconstructed.

By using a volumetric representation of the dendritic
model, we can represent the 3D shape of the model with
accuracy limited only by the original sampling of the EM
images. Furthermore, we can visualize the cytoskeleton and
the organelles interior to the dendrite.

IV. SUMMARY AND FUTURE RESEARCH

We have described components of a prototype system for
the reconstruction and analysis of neuronal dendrites. Our goal
is to reduce the effort required to reconstruct and analyze a
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Fig. 7. Shaded model of the reconstructed dendrite.

Fig. 8. Translucent model of the dendrite as reconstructed from the EM
images. Unlike conventional images of internal substructures which are
rendered as translucent surfaces in empty space, this image is rendered directly
from a model which includes all of the EM voxel data contained within the
dendritic membrane.

complete dendrite from months to days. We are approaching
this goal by exploiting three recently developed techniques
for volume reconstruction: a digital blink comparator for
EM section registration, snakes, or active energy-minimizing
contours, for dendrite segmentation, and volume rendering
to visualize both the overall morphology of 3D dendrites
and their cytoskeleton and internal organelles. The image
registration and segmentation tools in our system run at
interactive rates on modern graphics workstations with no
special purpose hardware.

Some work remains to be done to improve the recon-
struction process. The digital blink comparator opens a
way to use direct digitization from electron microscopes
for serial microscopy. This would eliminate the need for
rephotographing and digitizing EM photomicrographs, thus
reducing the reconstruction time and eliminating distortions
and quantization errors introduced by these processes. Direct
digitization from an electron microscope has been used for
single section studies, but has until now been impossible to
use for serial microscopy, which requires section alignment
[60].
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We need to provide (at least) a semiautomatic approach to
image registration, with the user intervening only for optional
fine-tuning. Currently, during manual alignment, we resample
the image using nearest pixel sampling. It would be desirable,
however, to allow subpixel alignment and resampling by using
a spatially varying shift filter, but this is computationally
prohibitive with our current equipment. Despite the sampling
limitations, we have found the resulting alignments to be
quite satisfactory.

We need to improve upon interpolation between sections
during reconstruction and between voxels during volume
slicing and rendering in order to reduce aliasing without
compromising image accuracy.

We have not yet begun to address the anatomical analysis
of dendrites. To this end, it would be useful to reconstruct
3D surface models from a set of stacked planar profiles (such
as the set illustrated in Fig. 5) that have been extracted from
the serial electron micrographs using snakes. The snakes yield
profiles as lists of vertices in space, a representation that
may be input to any of a number of existing algorithms
for reconstructing surfaces from planar cross sections ([34],
[19], [11], [20], [3], [41], [21], [57]). The deformable cylinder
model developed in [63] may also be adapted to this surface
reconstruction task. We expect that through semiautomated
approaches for dendrite decomposition, anatomical measure-
ments, and statistical analysis of these measurements, we can
achieve reductions in analysis times similar to those that we
are beginning to realize in the reconstruction phase.

When we add rapid image acquisition and quantitative
analysis components to our system, it will be possible to obtain
a sufficiently large number of reconstructions to evaluate
quantitatively the functional consequences that alterations in
neuronal morphology have for both the normal and diseased
brain.
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