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Abstract: Neuroscientists have studied the relationship between nerve cell morphology and func-
tion for over a century. To pursue these studies, they need accurate three-dimensional models
of nerve cells that facilitate detailed anatomical measurement and the identification of internal
structures. Although serial transmission electron microscopy has been a source of such models
since the mid 1960s, model reconstruction and analysis remain very time consuming. We have
developed a new approach to reconstructing and visualizing 3D nerve cell models from serial
microscopy. An interactive system exploits recent computer graphics and computer vision tech-
niques to significantly reduce the time required to build such models. The key ingredients of the
system are a digital “blink comparator” for section registration, “snakes,” or active deformable
contours, for semi-automated cell segmentation, and voxel-based techniques for 3D reconstruction
and visualization of complex cell volumes with internal structures.
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1 Introduction

Neuroscientists search for links between neuronal dendritic morphology and behavior, and mor-
phology and disease by studying the relationship between the morphology and function. De-
tailed morphological studies require accurate three-dimensional models of nerve cells that facil-
itate anatomical measurement and identification of internal structures. Neuronal dendrites and
their protruding dendritic spines can be seen with a light microscope (Fig. 1), but the resolution
is insufficient for detailed anatomical measurement and the internal structures are not visible.
To date, the only method available for detailed measurement and study of internal cell structure
is through 3D reconstructions from serial electron microscopy, or serial EM (Fig. 2) (Harris and
Stevens 1988; Harris and Stevens 1989; Stevens and Trogadis 1984; Wilson et al. 1987).

Reconstructions from serial EM have been produced almost since the invention of the electron
microscope. Initially, the reconstructions were purely manual, but over the years they have relied
increasingly on computers. Even with current computer-assisted techniques, the reconstruction
of a 5um dendritic segment with all of its spines and synapses, along with the quantitative
analysis of the reconstructed model, can take up to three months of work. By contrast, the
tissue preparation and EM photography take only about two days! It is remarkable that so many
neuronal reconstructions have been made because “... the incredible investment in time and energy
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Fig. 1: A hippocampal pyramidal cell with the soma and the dendrites (den) visible. The axons
are from other hippocampal cells that form synapses with these dendrites. At higher magnification
the dendritic spines are seen protruding from the dendrite. Bars — 10pm.

(Reproduced from (Harris et al. 1980) with permission from the publisher.)

necessary to reconstruct cells is nothing short of heroic” (Stevens and Trogadis 1984).

We present a new interactive approach to reconstructing and visualizing 3D nerve cell models from
serial microscopy, and describe an interactive system which exploits recent computer graphics and
computer vision techniques to reduce significantly the time required to build such models. After
presenting a more detailed review of the relevant neurophysiological motivation for our work and
its relationship to prior efforts, we describe the key components of our approach to reconstruction
and analysis of neuronal dendrites. Our prototype system currently features a digital “blink
comparator” for section registration, “snakes,” or active deformable contours, for semi-automated
cell segmentation, and voxel-based techniques for 3D reconstruction and visualization of the 3D
morphology of dendrites along with their internal structures.

1.1 Background

A nerve cell, or neuron, has four constituent parts: the cell body (soma), the dendrites, the
axon, and the presynaptic terminal of the axon (Kandel and Schwartz 1985). The soma is the
metabolic center of the cell, the dendrites are the receiving units, the axon is the conducting
unit, and the presynaptic terminals are the transmitting units. The areas of contact between the
presynaptic axonal terminals of one cell and the dendrites of another cell are called the synapses.
Most synapses arelocated at the end of protrusions on the dendrites, called the dendritic spines
(see Fig. 1).

In humans, the dendritic spines are lost or change shape both with aging (Feldman and Dowd
1975) and with diseases that affect the nervous system, such as dementia (Catala et al. 1988),
brain tumors (Spacek 1987), Down’s syndrome (Marin-Padilla 1976), epilepsy (Scheibel et al.
1940), Huntington’s disease (Graveland et al. 1985), and alcoholism (Ferrer et al. 1986). Detailed
anatomical descriptions of the synapses and dendritic spines will provide new understanding about
their function, thus improving opportunities for understanding the underlying causes and effects
of these diseases.
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Fig. 2: An EM photomicrograph from a section of a rat hippocampus. The dendrite (den) is
located in the center, and a large spine is protruding from its right side. The mitochondrion

(mc), microtubules (mt), some smooth endoplasmic reticulum (ser), and the synapse (syn) are
indicated. Bar = lum.

The dendritic spine is positioned so that changes in its morphology could modulate the transfer
of information from the synapse to the dendrite (Brown et al. 1988h; Wickens 1988). Direct
physiological study of the relationship between dendritic spine morphology and function has been
impossible because of their small size. Several simulations with theoretical models have shown,
however, that small changes in morphology could change the biophysical properties of the spines
(Rall 1974; Crick 1982). Several laboratory studies have shown that dendritic spines change shape
during maturation, following experience, and in response to direct physiological stimulation of the
presynaptic axon. Repeated, or “tetanic,” stimulation causes an enhanced synaptic efficacy, which
is referred to as long-term potentiation (LTP), a leading candidate for a synaptic explanation
of behavioral learning (Brown et al. 1988a). Anatomical analyses of stimulated dendrites have
revealed swollen spines and changes in the size of synapses (for a review see (Harris et al. 1989)).
Thus, a change in morphology might contribute to, or represent, the increase in synaptic efficacy
which is observed after stimulation.

Research has also shown that the cytoskeleton and the organelles internal to the neuron, such
as neurofilaments, microtubules, mitochondria, and smooth endoplasmic reticulum (see Fig. 2)
may control the shape of the nerve cell (Harris and Stevens 1988; Harris and Stevens 1989). The
challenge is to find links between neuronal morphology and physiological function in the normal
and diseased brain (Brown et al. 1988b).
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1.2 Previous work

Registration and Reconstruction: Early EM reconstruction techniques were entirely manual
(Stevens et al. 1980). A photograph from an electron microscope was illuminated from below and
the outline of the structures of interest were traced on a sheet of acetate positioned on top of the
print. Next a photograph of an adjoining section was illuminated and aligned with the trace from
the previous section, and its structures were then traced on a new sheet of acetate. This process
was repeated for all sections. The thickness of the acetate and the magnification were chosen so
that a fairly accurate model would result by inserting a number of blank sheets of acetate between
each trace. Finally, an artist would produce a 2D illustration of the 3D model.

Over the years, reconstruction from serial EM has become increasingly computer assisted. In a
system developed by Stevens et al. (1980; 1984), the EM negatives are first rephotographed onto
a 35mm filmstrip. Next, the filmstrip is mounted on a film transport, which in turn is mounted
on a stage driven by two computer-controlled stepping motors. The first image is digitized and
stored in image memory. The second image is continually digitized while the user moves the film
transport, and a video switcher alternately displays the stored and “live” images on a graphics
screen at a frequency of about 4 Hz. There is an illusion of movement when the images are
misaligned, and the movement is reduced as they are brought into alignment. When the motion is
minimized between the two images or features of interest, the second image is stored. Next, serial
sections two and three are aligned, followed by pairwise alignment of the remaining sections. Once
the images are aligned, the features or boundaries of interest are traced manually using a bitpad.
The traces can be displayed as a set of contours, as contours with the hidden lines removed, or
tessellated to form a surface which can be displayed as a solid object (Harris and Stevens 1989).

Using motion to compare photographs of the same or similar objects is not a new idea. As-
tronomers have used blink comparators since early this century to study astronomical plates
(Croswell 1990). A blink comparator holds two plates of the same part of the sky, and alter-
nately displays them to the user. Stationary objects such as stars remain fixed, but objects such
as comets or planets appear to move.

The problem of image alignment appears in many disciplines. Cartographers need to align aerial
photographs, and in robot vision much effort is devoted to registration of stereo pairs and temporal
image sequences (Horn 1986). In both these disciplines, the images are different views of the same
object, and in robot vision one can often assume that, at least locally, images are only misaligned
translationally. The alignment of neural sections, however, is a considerably more difficult problem
because the EM images are misaligned both translationally and rotationally and there is generally
a large discrepancy between consecutive images. The latter is due both to the integration over
the thickness of the section in the EM photographic process and to distortions of the tissue by its
preparation and by the EM process.

Giertsen et al. (1990) propose a method to automatically align electron micrographs. They
manually trace the'membrane and internal substructures of a pancreatic cell in serial sections and
specify connectivity relations among successive contours. Using contour shape features (centroids
and mean radii), they determine linear transformations between successive contours and refine
the alignment using residuals between the original and smoothed data. Aligned contours are
tessellated and rendered as polygonal surfaces.

Segmentation: Many techniques have been developed for 3D image segmentation. One of the
simplest techniques, intensity thresholding, has been used by (Drebin et al. 1988) and (Hohne et
al. 1989) and works relatively well for separating soft and hard tissue in MR and CT scans. Surface
normals are needed for high-quality rendering, and they may be computed using 3D generalizations
of 2D edge detectors; e.g., the Zucker-Hummel operator (Hohne et al. 1989). When the 3D volume
cannot be segmented by simply looking at single intensity values, a larger voxel neighborhood can
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be used, by applying a 3D generalization of the Marr-Hildreth operator (Hohne et al. 1988; Hohne
et al. 1989). Other 3D generalizations of edge detectors have also been used for segmentation (Liu
1977; Zucker and Hummel! 1981; Morgenthaler and Rosenfeld 1981).

Another technique for constructing polygonal representations of constant density surfaces from
volumetric data is marching cubes (Lorensen and Cline 1987). The data is assumed to be defined
on a 3D lattice, and an iso-surface is approximated by finding all intersections between the iso-
surface and the edges of the lattice. The technique dictates how to fill in the surface between
the edges of a cube for each of the 14 different types of intersections that can occur between the
surface and a cube in the lattice. The gradients are determined at each corner of the cube, and
the surface is rendered using the gradients to estimate the surface normal.

Unfortunately, because of the complexity of EM images of neuronal tissue (see Fig. 2), straightfor-
ward segmentation using any of the aforementioned techniques does not appear promising for 3D
reconstruction of dendritic models. Therefore, we aim at introducing a higher level of automation
into the section-by-section manual tracing methodology currently practiced by neuroscientists. A
recently proposed model-based image feature localization and tracking technique known as snakes
(Kass et al. 1987) is well suited to this goal. This interactive technique is consistent with the
manual tracing methods, but is considerably faster and more powerful.

The ability of snakes to conform to complex biological shapes such as cells and to track their
nonrigid deformations across image sequences makes them attractive tools for biomedical image
analysis. In (Leymarie 1990), snakes are used to track living cells moving on a planar surface.
Assuming modest interframe motion, snakes can exploit frame-to-frame coherence to track the
moving cell and also follow the deformations which occur as the cell moves. Ayache et al. (1989)
use snakes to find edges in cross sections of MR data. The user draws an approximate contour
around the region of interest and the snake deforms to fit the regions more accurately. Once the
snake has reached an equilibrium, it is used as a starting point for the next cross section. A 3D
model is built from the the resulting set of contours using Delauney triangulation (Boissonnat
1988). Variations on snakes based on B-splines have been applied to the segmentation of 3D CT
and MR data (Leitner et al. 1990).

Visualization: Volume visualization is an area in computer graphics that has received a great
deal of attention in recent years (Upson 1989). Much work has been devoted to high-quality
rendering of CT, PET, and MR data (Drebin et al. 1988; Levoy 1990) and seismic data (Sabella
1988; Wolphe, Jr. and Liu 1988). Specialized software and hardware has been developed to
facilitate real-time manipulation of both medical data (Meagher 1982; Meagher 1984) and seismic
data (Chakravarty et al. 1986). More recently, general-purpose software for volume rendering has
become available. Examples are ISG Technologies’ ICAR System (Stevens and Trogadis 1990),
Stardent’s AVS system (Upson et al. 1989) and Vitallmages’ VoxelView system (Vitallmages, Inc.
1990). In our work, we use the VoxelView system on a Silicon Graphics workstation to visualize
the 3D reconstructed dendrites.

2 Reconstruction of Neuronal Dendrites

2.1 Data Acquisition

Using routine tissue processing, a slice (400um thick) of well-preserved hippocampus was obtained
from the brain of a male rat, and the slice was embedded in epoxy resin. The slice was further
sectioned with an ultramicrotome, at an average section thickness of about 0.06um. (The dendritic
segment used in this paper is dendrite number 24 of reference (Harris and Stevens 1989)). Each
section was photographed at 10,000 times magnification in a JEOL 100B transmission electron
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microscope and printed on 8x10 inch photographic paper (see Fig. 2).

The EM photomicrographs were digitized on an ECRM Autokon flat-bed laser scanner capable of
digitizing reflection copy images at a wide range of resolutions (Ulichney 1982). The scanner has
a fixed spot size and the intensity can be quantized at one or eight bits/pixel. We digitized the
images at a resolution of 2560x1983 pixels, approximately twice the sampling rate of the smallest
features of interest, and with eight bits of intensity per pixel. The images were low-pass filtered
and subsampled to a size of 640x496 pixels.

2.2 Image Registration

We chose a manual approach to image registration for two reasons. First, the automatic align-
ment of successive EM images is a very difficult problem, because the images are displaced both
translationally and rotationally and usually there is a large disparity between consecutive images.
Second, even if an automated solution can be found, user intervention will be necessary when the
tissue has been distorted during preparation; for example, when a section has a fold.

We have implemented an interactive digital blink comparator. One image is held stationary
and the user translates and rotates the other image while the stationary and moving images
are alternately shown on a graphics screen. The user can translate the image in the x- and y-
directions and can rotate the image about its center by using a three-button mouse, each button
controlling one type of motion. The user moves the image until the motion between the two
images is minimized and the images are aligned. By using double buffering and by pre-computing
x- and y-components of the composite transformation, we obtain comparisons at a frequency of
about 1 Hz for a 640x496 pixel image on a Silicon Graphics 4D/220GTX using one of the R-3000
processors. We found this frequency adequate to obtain good alignment, although a higher speed
would be desirable.

When all images are aligned by pairs, we find the composite transformation for each image relative
to the first image in the EM series and resample the images using a spatially varying digital shift
filter. This finite impulse response (FIR) filter is designed with a conventional windowing tech-
nique (Oppenheim and Schafer 1975). The resulting aligned images are input to the segmentation
processes described in the next section.

2.3 Extracting Models from Electron Micrographs

The extraction of neuronal dendrites from a set of aligned EM images reduces to three subprob-
lems: (i) the localization of dendritic profiles in digital micrographs, (ii) the segmentation of the
interiors of dendrites bounded by profiles, and (iii) the identification of profiles of the same den-
drite across serial micrographs. The density and geometric complexity of neuronal features in
micrographs make-the first and third subproblems especially difficult to automate fully.

We take a semi-automatic approach which exploits recently developed physically-based vision
techniques for interactively localizing and tracking extended features in images. We employ a
variant of snakes, the interactive deformable contour models introduced in (Kass et al. 1987).
Snakes provide significant assistance to the user in accurately locating the membranes that bound
the dendrites in EM images. Using a mouse, the user quickly traces a contour which approximates
the dendrite boundary, then starts a dynamic simulation that enables the contour to locate and
conform to the true membrane boundary. Where necessary, the user may guide the contour
by applying to it simulated forces using the mouse. Through minimal user intervention, snakes
quickly produce accurate dendritic profiles in the form of complete, closed contours that facilitate
the segmentation of dendritic interiors. Finally, with some guidance, snakes are able to exploit
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the coherence between serial micrographs to quickly extract a sequence of profiles of the same
dendrite.

2.3.1 Deformable Contour Models

A snake can be thought of as a dynamic deformable contour in the z-y image plane. We define
a discrete deformable contour as a set of n nodes indexed by ¢ = 1,...,n, with time varying
positions x,(t) = [zi(t),y:(t)]". The behavior of an interactive deformable contour is governed by
the first-order dynamic system of equations

dx; .
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where v is a velocity-dependent damping constant, a,(t) are “compression” forces which make
the snake act like a series of unilateral springs that resist compression, B;(t) are “rigidity” forces
which make the snake act like a thin wire that resists bending, and f;(¢) are forces in the image
plane applied to the contour.

Let [; be the given reference length of the spring connecting node 7 to node i + 1 and let ri(t) =
Xi41 — X; be the separation of the nodes. Given the deformation e;(t) = ||ri|| — I;, we define

ai€; a;_1€i—1
P L P 2
S TR P @

To obtain contours that can stretch arbitrarily but resist shrinking past a prespecified amount,

we set
a ife; <0,
ai(t) = { 0 otherwise, 3)

so that each spring resists compression with constant a only when its actual length ||r]| is less
than ;. To give the contours some rigidity, we introduce the variables b; and define rigidity forces

B: = bipi(Xig2 — 2%x41 + x;) — 2b;(Xig1 — 2%i + Xi_1)
+ bi1(Xi = 2%i1 + Xi-2). (4)

Note that in the absence of external forces, if the nodes are separated more than ;, are equally
spaced, and lie on a straight line, & and B; vanish and the contour will be at equilibrium.
Compression and rigidity are locally adjustable through the a; and b; variables. In particular, by
setting a; = b; = 0, we are able to break a long deformable contour into several shorter contours
on an image.

To simulate the deformable contour we integrate the system of ordinary differential equations
(1) forward through time using a semi-implicit Euler procedure (Press et al. 1986). Applying
the forward finite difference approximation dx;/dt ~ (x!*2! — x!)/At to (1) and collecting linear
terms in the x; on the left yields the pentadiagonal system of algebraic equations

T t+At trae Y e t gt

-—x T = x{—a; +f] 5

At 1 + ﬂl At 1 1 + 1 ( )
for the subsequent node positions xt"*f in terms of the current positions x!. Since the system has

a constant coefficient matrix, we factorize it only once at the beginning of the deformable contour
simulation using a direct LDU factorization method and then efficiently resolve with different
‘right-hand sides at each time step (see (Terzopoulos 1987) for details).

After each simulation time step we draw lines between the new node positions xt+8¢ to display
the deformable contour as a dynamic curve in the image plane.



630

2.3.2 Image Segmentation using Deformable Contours

The deformable contour is responsive to an image force field which influences the contour’s shape
and motion. It is convenient to express the force field as the gradient of a potential function
Py (z,y) computed from the image I,(z,y) of EM section s:

f,’ = VP[‘(X{), (6)

where V = [0/0z,0/8y|". By simulating (1) with (6), the ravines (extended local minima) of
Py, act as attractors to deformable contours. The conteurs “slide downhill” and stabilize at the
bottoms of the nearest ravines.

In the present application, we are interested in the localization of cell membranes, which appear
dark in positive micrographs. We therefore convert I,(z,y) into a 2D potential function whose
ravines coincide with dark cell membranes:

Pr(z,y) = Go » I(z,y), (7)

where G,* denotes convolution with a 2D Gaussian smoothing filter of width ¢. The filter
broadens the ravines of Pj, so that they attract the contours from some distance away.

In practice, I, is not a continuous function, but a digital image. Therefore, we first convolve
the image with a discrete smoothing kernel, then compute (6) by bilinearly interpolating the
smoothed image gradients evaluated at the four pixels surrounding x;. The user can set the
degree of smoothing ¢ and select the display of image I, or potential functions P, through a
menu-driven interface.

The user initializes a closed deformable contour by quickly sketching with a mouse an approximate
trace around the dark membrane of a dendrite of interest. Figure 3(a) shows an initial deformable
contour sketched near a cell membrane (nodes are created automatically so that they are spaced
about one pixel apart, and an additional spring is inserted between the first and last nodes to
close the contour). The user then initiates the snake simulation (5). In a few simulation time
steps the deformable contour equilibrates at the bottom of the nearest ravine in Py, (Fig. 3(b)).
By interacting with the contour (see below), the user can help it quickly localize the membrane
ravine conform to its shape to produce an accurate profile of the dendrite (Fig. 3(e)).

Because the dendritic profile is a closed continuous contour, it is easy to segment the interior of the
cell from the rest of the image. We accomplish the segmentation by applying a standard region-fill
algorithm (Foley et al. 1990) which starts from a seed point inside the profile and sequentially
accesses the pixels of I, that are bounded by the profile. Figure 3(f) shows the cell segmented
from the dendritic profile of Fig. 3(e).

2.3.3 User and-Constraint Forces

Often the user will sketch an initial trace which deviates too much from the membrane ravine to
descend into the ravine properly. This is the case for the initial contour in Fig. 3(a) which reaches
the equilibrium configuration shown in Fig. 3(b). As can be seen, the deformable contour may
fall prey to nearby dark features inside the cell (or to nearby features of neighboring cells) which
act as false attractors. In such a case, the user may apply interactive simulated forces f(¢) by
using the mouse to guide deformable contour towards the ravine of interest as it is stabilizing (see
(Kass et al. 1987) for details about user forces). A useful force is the interactive spring
fm_ { x; —m(t) if ||x, - m(t)|| is minimal for node z, (8)
* 0 otherwise.
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Fig. 3: Cell segmentation using a deformable contour (see text). (a) Initial sketched contour.
(b) Initial equilibrium position. (c)-(d) Manipulating the contour with interactive springs (green
lines) and constraints (blue lines). (e) Final profile. (f) Segmented cell.
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Fig. 4: To the left, the current EM image with a deformable contour (snake); to the right, a stack
of dendritic profiles and their interiors. The current snake is displayed in red.

which pulls the nearest node towards the time-varying mouse position m(t) in the image plane.
Figure 3(c) shows the effect of a user stretching the contour towards the right with an attached
interactive spring (green line) from the mouse position (blue circle).

To localize a profile accurately, the user may want to constrain points on a deformable contour
by attaching them with springs to selected anchor points on the image. Such constraints prevent
the deformable contour from straying far from these points, regardless of the image forces and
the user’s other mouse manipulations. The mechanism for adding constraints is simply to fix
m(t) = a in the spring force (8) to create an anchor point aj in the image. The constraining
spring then applies a force f**. Figure 3(d) illustrates a constraint spring (blue line) which pulls
the contour back towards an anchor point on the cell membrane as the user tugs on the contour
with an interactive spring (green line). Note the two constraints (blue dots) in the final profile
contour in Fig. 3(e).

Combining the three types of forces, we have

= CIVP[!(X,') + Cmfl-m + ca Z fiak, (9)
k

where ¥, is a summation over all the anchor constraints in force and where cj, ¢cm, and ca are
the strength factors of the image forces, user spring forces, and anchor spring forces.

2.3.4 Exploiting Coherence Across Serial Sections

Our interactive technique for extracting cell profiles from EM images benefits from the fact that
snakes can exploit the coherence of profile positions and shapes across adjacent images. Often,
the user need not reinitialize the deformable contours when progressing from image to image to
extract adjacent profiles of a dendrite.

Once the deformable contours equilibrate into the membrane ravines in Py,, we replace this po-
tential function with the potential function Py, of an adjacent member of the image sequence.
Continuing from their previous equilibrium positions, the contours automatically slide downhill
to regain their equilibria in the new ravines, quickly localizing the new positions of the cell mem-
branes in the adjacent image and conforming to their shapes.
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Fig. 5: Oblique slice through model of a dendrite reconstructed from 41 serial sections. The mito-
chondrion can be seen extending through the length of the dendrite and some smooth endoplasmic
reticulum is visible in the large spine.

This simple mechanism for exploiting image-to-image coherence works so long as the perturbation
is small enough to maintain the deformable contours within the membrane ravines as we switch
to adjacent images. Should part of a contour escape the ravine, however, the rest of the contour
will usually pull it back into place due to the rigidity of the model. Nonetheless, deformable
contour reinitializations are normally required when portions of the dendritic spines are no longer
connected to the parent dendrite.

3 Visualizing Neuronal Dendrites

During image segmentation, the user can visualize what takes place in two graphics windows
(Fig. 4). The left window shows the current EM image overlayed with the deformable contour
simulation. The right window displays a stack of dendritic profiles and their interiors. The user
can also see the current contour with the (partial) model, thereby monitoring progress. The
stacked set of contours and interiors can be rotated and viewed from different vantage points.
When all the dendritic profiles have been found, we use the segmented dendritic interior to build
a volumetric voxel model. We apply volume rendering techniques to visualize the volumetric
model.

Volume rendering refers to the direct rendering of scalar data sampled in three dimensions. These
techniques differ from traditional computer graphics techniques in that explicit surfaces need not
be extracted from the data before display. Rather, the entire 3D volume of data is used for display.
Yet, by displaying only the portions of the volume that have a given density or a high gradient,
features and surfaces may be elicited without explicit representation (Foley et al. 1990).

We use the VoxelView system (Vitallmages, Inc. 1990) to reconstruct a 3D volumetric model
of a dendrite from the dendritic interiors that have been segmented from the serial sections.
The segmented dendrite in each image is enclosed by a rectangular array of black pixels. The
resulting arrays, or images, are stacked in order. The sizes of the rectangular arrays are chosen so
that the stack yields a rectangular parallelepiped. Since the sampling rate is less in the stacking
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Fig. 6: Shaded model of the reconstructed dendrite.

direction (z-direction) than in the x- and y-directions of the images, the VoxelView system linearly
interpolates an additional number of sections. In the examples shown below, we have reconstructed
41 sections of a dendrite, and interpolated three sections between each pair of original sections to
get approximately the correct proportions along the z-axis as we view all the sections.

By rapidly moving from one image to the next, we generate an interactive “movie” that enables
us to follow certain features of interest through the dendrite. We can also slice the stack of images
along planes perpendicular to the stacking direction, and along any arbitrary plane. Because of
the tissue cutting direction, the dendrite is positioned obliquely in the image volume; therefore,
we must cut the image volume obliquely to slice the dendrite lengthwise. One such oblique slice
is shown in Fig. 5, where we can see the shape and extent of the mitochondrion through the
dendrite, and also some smooth endoplasmic reticulum.

By default, the volume is rendered without any shading; however, the user can specify the position
of a light source and obtain a shaded view of the model. In Fig. 6, we have rendered the dendrite
model with shading. The shading helps accentuate the 3D shape of the dendrite. Other features of
the VoxelView system that we find useful are the ability to tumble the model interactively and to
make portions of the model transparent by adjusting the opacity values of the pixels (Vitallmages,
Inc. 1990).

By using a volumetric representation of the dendritic model, we can represent the 3D shape of
the model with accuracy limited only by the original sampling of the EM images. Furthermore,
we can visualize the cytoskeleton and the organelles interior to the dendrite.

4 Summary and Future Research

We have described a prototype system for the reconstruction and analysis of neuronal dendrites.
Our goal is to reduce the effort required to reconstruct and analyze a complete dendrite from a
few months to a few days. We are approaching this goal by exploiting three recently developed
techniques for volume reconstruction: a digital blink comparator for EM section registration,
snakes, or active energy-minimizing contours, for dendrite segmentation, and volume rendering
to visualize both the overall morphology of 3D dendrites and their cytoskeleton and internal
organelles.

Much work remains to be done to improve the reconstruction process. The digital blink compara-
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tor opens a way to use direct digitization from electron microscopes for serial microscopy. This
would eliminate the need for rephotographing and digitizing EM photomicrographs, thus reducing
the reconstruction time and eliminating distortions and quantization errors introduced by these
processes. Direct digitization from an electron microscope has been used for single section studies,
but has until now been impossible to use for serial microscopy, which requires section alignment
(Stevens and Trogadis 1984).

We need to provide (at least) a semi-automatic approach to image registration, with the user
intervening only for optional fine-tuning. Currently, during manual alignment, we resample the
image using nearest pixel sampling. It would be desirable, however, to allow subpixel alignment
and resampling by using a spatially varying shift filter, but this is computationally prohibitive with
our current equipment. Despite the sampling limitations, we have found the resulting alignments
to be quite satisfactory. ’

We need to improve upon the snakes’ behavior at spine branching points, to reduce the amount
of user assistance required when dendritic spines are no longer connected to the parent dendrite.

We need to improve upon interslice interpolation to allow fractional section interpolation; that
is, proper resampling of the volume to get accurate proportions in the x-, y-, and z-directions.
Similarly, we need to provide better inter-pixel interpolation at volume slicing and rendering in
order to reduce aliasing without compromising image accuracy.

We have not yet begun to tackle anatomical analysis of the dendrites. We expect, however, that
through (semi-)automated approaches for dendrite decomposition, anatomical measurements, and
statistical analysis of these measurements, we can achieve reductions in analysis times similar to
those that we are beginning to realize in the reconstruction phase.

When we have reached our goal, the time required to reconstruct and analyze neurons or parts
of neurons will be reduced from a few months to a few days. It will then be possible to obtain a
sufficiently large number of reconstructions to evaluate quantitatively the functional consequences
that alterations in neuronal morphology have for both the normal and diseased brain.
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