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The morphology and molecular composition of synapses provide the structural basis for syn-
aptic function. This article reviews the electron microscopy of excitatory synapses on den-
dritic spines, using data from rodent hippocampus, cerebral cortex, and cerebellar cortex.
Excitatory synapses have a prominent postsynaptic density, in contrast with inhibitory synap-
ses, which have less dense presynaptic or postsynaptic specializations and are usually found
on the cell bodyor proximal dendritic shaft. Immunogold labeling shows that the presynaptic
active zone provides a scaffold for key molecules involved in the release of neurotransmitter,
whereas the postsynaptic density contains ligand-gated ionic channels, other receptors, and
a complex network of signaling molecules. Delineating the structure and molecular organ-
ization of these axospinous synapses represents a crucial step toward understanding the
mechanisms that underlie synaptic transmission and the dynamic modulation of neurotrans-
mission associated with short- and long-term synaptic plasticity.

The structural basis of information transfer
between nerve cells remained obscure until

the late 19th century, when neuroanatomists
using newly developed silver stains identified
axonal boutons that seemed to contact dendrites
or dendritic spines of other neurons (Fig. 1)
(Shepherd 1995; Guillery 2005). The term “syn-
apse” (from the Greek “to clasp”) was origin-
ally suggested to Sherrington by his friend
A.W. Verrall, a Greek scholar. However, some
still claimed a protoplasmic continuity between
presynaptic and postsynaptic elements. This
argument between “neuronal” and “reticular”
theories was not finally resolved until the intro-
duction of electron microscopy (EM), which en-

abled direct visualization of the synapse and re-
vealed a cleft separating the presynaptic axon
from the postsynaptic dendrite (Fig. 1, inset)
(De Robertis and Bennett 1955; Palay and Pal-
ade 1955).

Understanding the structure of synapses is
a crucial first step in understanding their func-
tion. This article addresses the ultrastructure
and subcellular composition of synapses in the
mammalian brain, as defined by high-resolu-
tion electron microscopy (EM). Examples are
drawn mainly from rodent hippocampus, cere-
bral cortex, and cerebellum. Gray (1959) iden-
tified two main categories of synapses: type I
or asymmetric (later shown to be glutamatergic
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and excitatory), and type II or symmetric (later
shown to be inhibitory). Here we focus mainly
on the asymmetric synapses on dendritic spines.
Forcontrast, somedataarealsopresented fromin-
hibitory and neuromodulatory synapses. Where
possible, we integrate structural descriptions with

discussion of key synaptic molecules. For addi-
tional description and images, see Peters et al.
(1991) and online atlases at http://synapses.clm.
utexas.edu/atlas/contents.stm, http://ccdb.ucsd.
edu/index.shtm, and http://www.drjastrow. de/
EMAtlasE.html.
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Figure 1. Golgi-impregnated pyramidal cell in hippocampal area CA1, showing the soma and apical and basal
dendrites. (inset, left) Higher magnification shows an axon passing by dendritic spines protruding from the ap-
ical dendritic shaft. (inset, right) A drawing from the earliest EMs of dendritic spines: (a) spine apparatus; (b)
spine neck; (c) presynaptic membrane; (den.t.) dendritic microtubules; (d) dense material in synaptic cleft; (e)
postsynaptic membrane; (f ) synaptic cleft; (g,h,i) plasma membranes of pre-, post-, and neighboring processes;
(m) mitochondrion; (pre) presynaptic axons; (st) “stalk” of axon; (sv) synaptic vesicles. (Images are modified
from Gray 1959 and Harris et al. 1980; reprinted, with permission, from Oxford University Press # 1959 and
Elsevier # 1980, respectively.)
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ORGANIZATION OF THE SYNAPTIC
NEUROPIL

Excitatory synapses are found mainly on den-
drites and dendritic spines, whereas inhibitory
synapses concentrate on the cell soma and axo-
nal initial segment, with a sparse distribution
along both spiny and nonspiny dendritic shafts.
Dendrites, axons, and astroglial processes form
a fine felt-like mesh—the neuropil—where most
of the synaptic interactions occur. Serial-section
electron micrographs from ultrathin (�50 nm)
sections of neuropil from the rat hippocampus
illustrate dendrites, axons, and astroglial proc-
esses (Fig. 2A); within this complex neuropil
are a large number of excitatory asymmetric syn-
apses (Fig. 2B–D) and a smaller number of in-
hibitory symmetric synapses (Fig. 2E,F). This
article describes synaptic structure in functional
sequence from presynaptic axons to postsynap-
tic dendritic spines.

PRESYNAPTIC COMPONENTS

Axonal Boutons

The excitatory axospinous synapses in the stra-
tum radiatum (s. radiatum) of hippocampal area
CA1 are typical of synapses formed by the thin,
often unmyelinated axons that predominate
throughout the brain. Most of the presynaptic ax-
ons originate from CA3 pyramidal cells and syn-
apse with spines extending from the apical den-
drites of CA1 pyramidal cells. Individual axons
weaving throughout the complex neuropil form
presynaptic boutons that contain neurotransmit-
ter-filled vesicles (Fig. 3A,B). The large majority
(�75%) of these vesicle-containing boutons
make a single synaptic contact, �21% form mul-
tiple synapses, and �4% lack a postsynaptic part-
ner (Shepherd and Harris 1998; Sorra et al. 2006).
Under conditions of rapid synaptogenesis in the
mature hippocampus, new postsynaptic partners
synapse with existing presynaptic boutons, giving
rise to more multisynaptic boutons and avoiding
the need to generate presynaptic boutons de novo
(Kirov et al. 1999, 2004; Yankova et al. 2001; Pet-
raket al. 2005). It is not known whether multisyn-
aptic boutons play a significant role during devel-
opmental synaptogenesis.

Other axons throughout the brain form dis-
tinct types of synapses. For example, the mossy
fiber axons arising from granule cells of the
dentate gyrus that terminate on the proximal
dendrites of area CA3 pyramidal cells have
very large presynaptic boutons, each synapsing
with multiple dendritic spines (Fig. 3C). These
boutons also form small thin protrusions that
synapse on the shafts of nonspiny interneurons
(Amaral and Dent 1981; Lawrence and McBain
2003). Axons in the cerebellar cortex form a va-
riety of synapses (Palay and Chan-Palay 1974).
Cerebellar granule cells give rise to a single par-
allel fiber, which makes axospinous synapses
with numerous Purkinje cell dendritic spines;
in contrast, a single climbing fiber (originating
from the inferior olive) forms numerous synap-
tic boutons along the proximal dendritic shaft
of a single Purkinje cell (Xu-Friedman et al.
2001). Specialized contacts on the dendrites of
cerebellar granule cells are termed “synaptic
glomeruli”; each glomerulus is characterized by
an exceptionally large presynaptic bouton syn-
apsing with multiple postsynaptic dendrites.
The axonal varicosities of inhibitory symmetric
synapses often make direct contacts with the
surface of the cell soma, interspersed among
glial processes (Fig. 3D,E) (Ledoux and Woolley
2005). For other examples of the remarkable di-
versity of presynaptic boutons, see http://syn-
apses.clm.utexas.edu/atlas/1_6intro.stm.

The Active Zone

The active zone (AZ) is a specialized region on
the presynaptic plasma membrane, where syn-
aptic vesicles are docked and primed for release
(Heuser and Reese 1977; Landis et al. 1988; Sud-
hof 1995). The AZ is aligned in registry with the
postsynaptic density. In electron micrographs, it
can be recognized by the increased electron den-
sity of the presynaptic membrane in this region.
Associated with the AZ are cytoplasmic “dense
projections,” apparently organized into a pre-
synaptic grid (Fig. 4A); the status of these struc-
tures is uncertain, perhaps because they are
variable and sensitive to fixation and processing
(Gray 1963; Pfenninger et al. 1972; Landis et al.
1988; Siksou et al. 2007). At some synapses (e.g.,
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Figure 2. Synaptic neuropil. (A) Serial section EM images from the CA1 field of adult rat hippocampus are color-
coded to illustrate the felt-like neuropil, which is dominated by excitatory axons (green) and spiny dendrites
(yellow). One nonspiny dendrite (brown, also NS in panel D) and pieces of four inhibitory axons (orange)
are visible in these sections, typical of their sparse distribution in the neuropil. Several thin astroglial processes
(light blue) interdigitate among the axons and dendrites. (B) Asymmetric synapse with a macular PSD (green
arrow) on a medium-size dendritic spine (sp). (C) PSD (green arrows) perforated by an electron-lucent region
(red arrow) on a large dendritic spine (sp) with some SER at its base. (D) Asymmetric synapses (green arrows)
on the shaft of a nonspiny dendrite (ns) containing a mitochondrion (mito) have comparable thicknesses to the
macular and perforated PSDs on dendritic spines in the same field. (E) Adjacent sections through a symmetric
synapse (orange arrows) on a spiny dendritic shaft (the arrow in E2 points to a presynaptic docked vesicle). (F)
Adjacent sections through another symmetric synapse (orange arrows) formed by the same axon as in E, but on a
different spiny dendritic shaft. The 1-mm scale bar in section 139 is for the neuropil series in A; the 1-mm scale
bar in C is for panels B–F.
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Figure 3. Presynaptic axons. (A) Three-dimensional (3D) reconstructions of CA3-to-CA1 axons (Schaffer col-
laterals). (B) 3D reconstructions of axons with vesicles (yellow) and associated postsynaptic partners (dendritic
spine, gray; PSD surface, red). Typical single synaptic boutons (SSB) have a single postsynaptic partner, multi-
synaptic boutons (MSB) have more than one postsynaptic partner, and nonsynaptic boutons (NSB) contain
vesicles but have no postsynaptic partners. Also illustrated are small dense core vesicles (dcvs, dark blue), mi-
tochondria (mito, pale blue), and a multivesicular body (mvb, dark green with brown vesicles). (C1) 3D recon-
struction of a proximal CA3 pyramidal cell dendrite (blue) and a large mossy fiber bouton (translucent yellow),
which contains numerous mitochondria (yellow) and vesicles (green). The cut-away in C2 shows synapses (red)
onto multiple dendritic spines, some of which are highly branched. The bouton also forms nonsynaptic cell ad-
hesion junctions (fuchsia). (D) Electron micrograph through inhibitory presynaptic boutons (purple) that
form symmetric synapses (red arrows) on the soma of a CA1 pyramidal cell. Scale bar, 500 nm. (E) 3D recon-
struction of four complete inhibitory synaptic boutons (purple) interspersed with glial processes (green) on the
surface of a CA1 pyramidal cell soma (gray). The magnifications of all 3D images in A–C have been rescaled to
match the 1-mm scale bar in E. (Panel A is from Shepherd and Harris 1998; reprinted, with permission, from the
authors; B is from Sorra et al. 2006; reprinted, with permission, from the authors; the image in panel C is modi-
fied from a supplemental movie by Rollenhagen et al. 2007; reprinted, with permission, from the Journal of Neu-
roscience# 2007; panels D and E are from Ledoux and Woolley 2005; reprinted, with permission, from the Jour-
nal of Neuroscience # 2005.)
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Figure 4. Presynaptic active zone (AZ) and vesicles. (A) Presynaptic dense projections (dp), a postsynaptic
density (PSD), and the “intercleft line” (iL) at cerebellar synapses, revealed by ethanolic phosphotungstic
acid. (B) Two serial sections through a parallel fiber synapse on a dendritic spine (Sp) in cerebellar cortex illus-
trate docked synaptic vesicles (green), which have no cytoplasm between the membrane of the vesicle and the
AZ membrane (red arrows). (See facing page for legend.)
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photoreceptors, hair cells), the dense projec-
tions form a specialized “synaptic ribbon” also
thought to dock and prime vesicles for release
(LoGiudice and Matthews 2009). Recent work
with cryoelectron tomography in tissue culture
and organotypic slices suggests that the com-
plex network of filaments in the AZ changes di-
mensions during release, further supporting its
role in vesicle mobilization and release (Fernan-
dez-Busnadiego et al. 2010).

Vesicles in Axonal Boutons

Presynaptic boutons of excitatory synapses
contain round, clear vesicles (�35 nm diame-
ter) loaded with the neurotransmitter glutamate
(Harris and Sultan 1995; Qu et al. 2009). Vesicles
distributed throughout the presynaptic bouton
compose a “reserve” pool distinct from the ana-
tomically docked vesicles that contact the presy-
naptic membrane at the AZ (Fig. 4B,C). Neuro-
transmitter is released from a docked vesicle
into the synaptic cleft. Vesicles docked at the pre-
synaptic active zone are often smaller than non-
docked vesicles, as if some of their contents had

been released at the time of fixation (Harris and
Sultan 1995). After release, the vesicular mem-
brane is recycled via clathrin-mediated endocy-
tosis (Fig. 4C) or via bulk endocytosis, especially
with strong stimulation (Clayton and Cousin
2009; Royle and Lagnado 2010).

Presynaptic boutons can also contain other
vesicles of diverse shapes, sizes, and content
(Torrealba and Carrasco 2004). In addition to
the typical small synaptic vesicles, some excita-
tory glutamatergic synapses also contain larger
clear vesicles (.60 nm), consistent with the oc-
currence of “giant” miniature EPSCs at these
synapses (Fig. 4D) (Henze et al. 2002). In addi-
tion to the clear vesicles, some glutamatergic
axonal varicosities contain dense core vesicles
(�80 nm, DCV) among the pool of clear ves-
icles (Fig. 4E). A few (1–10) DCVs are present
in �20% of mature presynaptic boutons in
CA1 (Sorra et al. 2006). The outer membranes
of these DCVs label with antibodies to proteins
like Piccolo and Bassoon (Fig. 4H), which also
concentrate at the AZ (Fig. 4H). Similar immu-
nolabeled vesicles are common along axons in
the developing nervous system, suggesting that

Figure 4. (Continued) The small black arrow points to a vesicle close to the membrane, but not docked. (C)
Hippocampal CA3!CA1 synapse; note the docked vesicle (curved arrow, red arrow) and a presynaptic endo-
cytic zone identified by a coated pit (straight arrow). (D) Large clear vesicles (arrows) and a DCV (red arrow-
head) at the presynaptic AZ, and nondocked small synaptic vesicles in the reserve pool (arrowheads) of a CA3
mossy fiber bouton synapsing with a large dendritic spine (SP). (E) Small DCVs (red arrowheads) colocalize
with small clear vesicles at a hippocampal CA1 spine synapse; and pre-embedding immunogold labeled for Pic-
colo (F) and Bassoon (G). (H ) Bassoon localized to the AZ. (I) Post-embedding immunogold labeling for the
big potassium channel (BK) located at the presynaptic active zone of a synapse on a small dendritic spine in
s. radiatum of area CA1 (double-headed red arrow). (J ) Positions of gold particles were compiled from the post-
synaptic to presynaptic side; the glutamatergic NMDA receptor concentrated on the postsynaptic side, whereas
BK channels concentrated on the presynaptic side (gold particles for NMDA are not visible in I). (K) Post-
embedding immunogold labeling for CAST. Gold particles have been colored red for emphasis; original version
of boxed region is shown in L. (M) Quantitative distribution of CAST with distance (in nanometers) from the
presynaptic plasma membrane (arrow on x-axis). (N) Puncta adherens (PA) adjacent to the synaptic active zone
(delimited beneath the PSD by triangles and line) of a large CA1 dendritic spine. (O) Silver-enhanced immu-
nogold labeling for the cell adhesion moleculeb-catenin, at the edge of an AZ on a cerebellar dendritic spines. All
images have been scaled to match the 100-nm bar in C. (Panel A is adapted from van der Want et al. 1984; re-
printed, with permission, from Elsevier # 1984; panel B is from Xu-Friedman et al. 2001; reprinted, with per-
mission, from the author; panel C is from Harris and Sultan 1995; reprinted, with permission, from the author;
panel D is from Henze et al. 2002; reprinted, with permission, from the author; panel E is from Sorra et al. 2006;
reprinted, with permission, from the author; panel F is from Zhai et al. 2001, panels G and H are from Tao-
Cheng 2007; reprinted, with permission, from Elsevier # 2001; panels I and J are from Hu et al. 2001; reprinted,
with permission, from the Journal of Neuroscience # 2001; panels K–M are modified from Siksou et al. 2007;
panel N is from Spacek and Harris 1998; reprinted, with permission, from the author; panel O is modified from
Uchida et al. 1996.)
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these DCVs are a local source of new AZs (Ah-
mari and Smith 2002; Ziv and Garner 2004). In
support of this hypothesis, DCVs are lost from
presynaptic axonal boutons during rapid syn-
aptogenesis in the mature hippocampus, as
would be expected if they had been used to gen-
erate new AZ sites (Sorra et al. 2006).

Inhibitory presynaptic boutons contain
slightly smaller vesicles of both round and flat-
tened shapes in aldehyde-fixed tissue (Fig. 2E,F).
Rapid freezing reveals rounder vesicles in the
symmetric synapses (Tatsuoka and Reese 1989),
suggesting that differences in the subvesicular
composition of excitatory and inhibitory syn-
aptic vesicles may render those at symmetric
synapses more susceptible to shape changes
during aldehyde fixation. The vesicles at sym-
metric synapses usually contain the neurotrans-
mitters GABA or glycine. Inhibitory synapses
are most abundant at the neuronal soma and
along proximal dendritic shafts. Inhibitory syn-
apses are also interspersed among the excitatory
synapses along dendrites; for example, �5%–
10% of the synapses along a dendrite in stratum
radiatum of area CA1 are inhibitory. Inhibitory
synapses are sometimes found at the axon hil-
lock, where their activation might provide espe-
cially potent inhibition. In some brain regions,
inhibitory synapses can also be found on the
necks of dendritic spines (Wilson et al. 1983;
Dehay et al. 1991; Knott et al. 2002). Some neu-
ropeptides, as well as aminergic neurotransmit-
ters, are typically packaged in large (�100 nm)
dense core vesicles (Bauerfeind et al. 1995;
Torrealba and Carrasco 2004; Crivellato et al.
2005), although neuropeptides have also been
detected in the cytoplasm surrounding pleio-
morphic vesicles of inhibitory synapses (Harris
et al. 1985).

Other Axonal Components

Microtubules are cytoskeletal elements that in-
teract with dynein- and kinesin-based motors
to transport vesicles, mitochondria, smooth en-
doplasmic reticulum, and endosomal compart-
ments along axons. Microtubules are obvious
along axons (e.g., see http://synapses.clm.utexas.
edu/atlas/1_1_8intro.stm) but are uncommon

within central synaptic boutons, perhaps because
the calcium transients associated with transmit-
ter release cause their depolymerization under
normal conditions (Weisenberg 1972; Gray 1975;
Weisenberg and Deery 1981; Gray et al. 1982;
O’Brien et al. 1997). Similar activity-dependent
effects may explain their absence in dendritic
spines (see below), in contrast to the transient
formation of microtubules in spines during
early development and when synapses are com-
pletely inactive (Westrum et al. 1980; Fiala et al.
2003).

Mitochondria are distributed heterogene-
ously along axons and in presynaptic boutons.
In hippocampal CA1, for example, only 41%
of presynaptic boutons contain mitochondria
(e.g.,Fig.3B)(ShepherdandHarris1998).Incon-
trast, some large boutons each contain many
mitochondria (e.g., Fig. 3C). Sorting endosomes
are associated with multivesicular bodies (see Fig.
3B, top axon) that transport dysfunctional pro-
teins and membrane from presynaptic boutons
back to the soma for degradation. Recent work
in cultured hippocampal axons shows that local
protein synthesis is needed for vesicular release
(Sebeo et al. 2009), but polyribosomes are un-
common in presynaptic boutons in the CNS. In
squid giant axons, the local protein synthesis
machinery appears to derive from the ensheath-
ing glia (Crispino et al. 1997; Eyman et al.
2007); whether perisynaptic astroglial processes
are a source of local synthesis at mammalian syn-
apses remains an open question (Chicurel et al.
1993).

Molecular Anatomy of the Active Zone

Extensive research has focused on the bio-
chemistry of presynaptic vesicles and transmit-
ter release (Sudhof 1995, 2004; Schoch and
Gundelfinger 2006; Takamori et al. 2006; Riz-
zoli and Jahn 2007). Notwithstanding recent
dramatic advances in super-resolution light mi-
croscopy (Willig et al. 2006; Balaji and Ryan
2007; Dani et al. 2010), immuno-EM remains
the standard method to investigate the nano-
scale distribution of proteins within the pre-
synaptic bouton. The most common technique
uses peroxidase-based enzymatic amplification
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to generate an electron-dense diaminobenzi-
dine reaction product. However, diffusion of
the product typically leads to a localization un-
certainty of �100 nm. In this article, we focus
on anatomical results based on immunogold
methods, which provide a more quantitative
and spatially accurate signal.

The cytomatrix proteins Bassoon and Pic-
colo concentrate at the AZ (Fig. 4H) (Zhai et al.
2001; Siksou et al. 2007; Tao-Cheng 2007).
Voltage-, ligand-, and calcium-gated channels
and transporters have also been detected in the
AZ by immunogold labeling (e.g., the BK chan-
nel) (Fig. 4I,J), consistent with their functions in
synaptic transmission(He etal.2000;Mineretal.
2000, 2003; Hu et al. 2001; Tamaru et al. 2001;
Darstein et al. 2003; Kulik et al. 2004; Nyiri
et al. 2005; Serwanski et al. 2006; Tremblay et al.
2007; Furness et al. 2008; Ladera et al. 2008; Mel-
one et al. 2009; Needleman et al. 2010). Several
studies have provided immunogold evidence for
other proteins at the active zone that may play
a direct role in transmitter release, including
CAST (Fig. 4K–M) and RIM1 (Hagiwara et al.
2005; Tao-Cheng 2006). Surprisingly, the t-
SNARE-related proteins syntaxin and SNAP-25
show no obvious enrichment at the AZ (Hagi-
wara et al. 2005). Most of the membrane-bound
proteins found in the AZ can also be detected
away from it. In fact, a few receptors (e.g.,
mGluR3) (Tamaru et al. 2001) and most of the
neurotransmitter transporters (He et al. 2000;
Miner et al. 2000, 2003; Chen et al. 2002; Melone
et al. 2009) are found at the presynaptic mem-
brane close to the synaptic region but may be se-
lectively excluded from the AZ itself.

Beyond the region of the active zone, im-
munogold data on proteins within presynaptic
boutons from mammalian forebrain are quite
limited, although one may extrapolate from
more tractable models like the giant synapse
of the lamprey (Bloom et al. 2003; Brodin and
Shupliakov 2006). PICK1, synuclein, and CaM-
KIIa have been reported within the presynap-
tic cytoplasm of hippocampal neurons (Tao-
Cheng et al. 2006; Tao-Cheng 2007; Haglerod
et al. 2009). Different types of filaments appear
to link presynaptic vesicles (Siksou et al. 2007,
2009). The chemical identity of these filaments

remains uncertain, although both synapsin and
actin are probably involved (Hirokawa 1989;
Doussau and Augustine 2000).

THE SYNAPTIC CLEFT

The synaptic cleft is a widening (�20 nm) in
the apposition between the presynaptic axon
and its postsynaptic partner. Consistent with
classical reports, recent ultrastructural work
on quick-frozen hydrated material emphasizes
that this widening is not really a “space,” but is
instead packed with electron-dense material
(Lucic et al. 2005; Zuber et al. 2005). The cleft
appears to contain both standard extracellular
matrix proteins and specialized synaptic pro-
teins (Dityatev et al. 2010), but little direct im-
munogold evidence is available, except for the
secreted pentraxins Narp and NP1 (O’Brien
et al. 1999; Xu et al. 2003).

The synapse is a highly specialized adhesive
junction. It is thus not surprising that several
classes of adhesion molecules have also been
identified at the synapse, including proteins
of the immunoglobulin superfamily, integrins,
neuroligin/neurexins, and ephrin/eph recep-
tors (Gerrow and El-Husseini 2006; Craig and
Kang 2007; Dalva et al. 2007; Shapiro et al.
2007; Dityatev et al. 2008; Togashi et al. 2009;
Woo et al. 2009; Zipursky and Sanes 2010). Be-
yond their role in structural organization and
maintenance of the synapse, many of these ad-
hesion molecules play a special role in synapto-
genesis and/or in long-term synaptic plasticity.
Immunogold labeling has detected many adhe-
sion molecules at or near synaptic membranes;
however, even immunogold methods cannot
readily resolve whether the labeling is strictly
presynaptic, strictly postsynaptic, or both. Pro-
teins for which immunogold data are available
include NCAM (Fux et al. 2003), nectin (which
associates with the actin-binding protein afadin
and the synaptic scaffold molecule S-SCAM)
(Nishioka et al. 2000; Mizoguchi et al. 2002; Ya-
mada et al. 2003), cadherins and protocadher-
ins (Fannon and Colman 1996; Phillips et al.
2003; Petralia et al. 2005; Huntley et al. 2010;
Li et al. 2010), a- and b-catenin (Uchida et al.
1996; Petralia et al. 2005, 2010), neuroligin/
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neurexin family members (Song et al. 1999; Pe-
tralia et al. 2005; Taniguchi et al. 2007; Kasugai
et al. 2010), ephrins/Eph receptors (Buchert et
al. 1999; Tremblay et al. 2007), NGL (Kim et al.
2006), SALM (Seabold et al. 2008), and CASK,
which can bind to syndecan, a heparan sulfate
proteoglycan on the cell surface (Hsueh et al.
1998). Some of these proteins concentrate just
outside the synaptic specialization, consistent
with ultrastructural observations of puncta ad-
herens seen at the edges of synapses (Fig. 4N)
(Spacek and Harris 1998; Latefi and Colman
2007); thus, for example, immunogold labeling

for aN- and b-catenin concentrates at puncta
adherens near the edges of synapses (Fig. 4O).

POSTSYNAPTIC DENDRITIC SPINES

Dendritic spines vary greatly in their dimen-
sions, not only across brain regions (Table 1),
but even along short segments of a single den-
drite. For example, spines along Purkinje cell
dendrites (which synapse in the molecular layer
with parallel fibers) all have similar “lollipop”
shapes, with a bulbous head on a constricted
neck (Fig. 5A). In contrast, dendritic spines in
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hippocampus are much more variable in shape;
even neighboring protrusions can vary from im-
mature “filopodia-like” to mature mushroom-
shaped spines (Fig. 5B) (Bourne and Harris
2010). In both regions, the size of the spine
head correlates remarkably well with the number
of presynaptic vesicles (Fig. 5C).

Table 1 summarizes spine dimensions and
densities based on 3D reconstructions of den-
dritic segments from serial-section EM. The
average dendritic spine on a cerebellar Purkinje
cell is about twice as big (0.12 mm3) as the aver-
age spine on a hippocampal pyramidal cell in
the s. radiatum of CA1 (0.054 mm3), but not
in s. lacunosum-moleculare (0.11 mm3). How-
ever, the range in spine volumes is much greater
in area CA1 (0.003–0.56 mm3) than in cerebel-
lum (0.06–0.18 mm3). The distributions are
not normal but highly skewed, and additional
quantitative data would provide further insight.
For example, the CA1 hippocampus (the brain
region with the largest available body of quan-
titative data) contains numerous small spines
and a few very large spines that contain den-
dritic core structures such as polyribosomes
and are associated with enlarged synapses fol-
lowing long-term potentiation (e.g., Bourne
and Harris 2010). Whether the difference in
range of dendritic spine sizes between cerebel-
lum and hippocampus reflects an underlying
difference in capacity for structural plasticity re-
mains an open question.

Ultrastructure of the Postsynaptic Density

The most prominent postsynaptic component
of excitatory synapses is the postsynaptic den-
sity (PSD), identified as a fuzzy electron-dense
structure extending �35–50 nm into the cyto-
plasm beneath the plasma membrane at asym-
metric synapses (Gulley and Reese 1981; Landis
and Reese 1983). The reconstructed surface of
small synapses is usually regular (although not
truly circular) and becomes more complex with
size; many of the largest synapses are “perfo-
rated” by interior holes devoid of PSD material
(Figs. 2, 5). The electron-dense fuzz that defines
the PSD is apposed to the postsynaptic mem-
brane in tight registry with the presynaptic ac-

tive zone, likely reflecting direct trans-synaptic
interactions. The degree of presynaptic and
postsynaptic thickening varies greatly even
among excitatory or inhibitory synapses in the
same brain region (Colonnier 1968) (see also
http://synapses.clm.utexas.edu/anatomy/
chemical/colh.htm). PSD thickness is also sen-
sitive to experimental manipulations (e.g., hy-
poxia or intense stimulation) that impact the
subcellular organization of constituent proteins
(Hu et al. 1998; Otmakhov et al. 2004; Tao-
Cheng et al. 2007). The surface area of the
PSD correlates nearly perfectly with spine
head volume and the total number of presynap-
tic vesicles (Fig. 5C), and with the number of
vesicles docked at the AZ (Harris and Stevens
1988b; Lisman and Harris 1993; Harris and Sul-
tan 1995; Schikorski and Stevens 2001).

Molecular Anatomy of the PSD

The PSD contains a variety of receptors, scaf-
folding proteins, and signaling complexes in-
volved in synaptic transmission and plasticity
(see Sheng and Kim 2011). The biochemically
isolated PSD has a molecular weight of �1 bil-
lion daltons (Chen et al. 2005), and proteomic
studies have identified hundreds of proteins in
the PSD fractions. Antibodies have been raised
to many of these proteins, but the dense matrix
of the PSD limits antibody access, and extensive
noncovalent protein–protein linkages interfere
with antibody binding (Fukaya and Watanabe
2000; Burette et al. 2001). Thus, the standard
“pre-embedding” technique, which relies on sil-
ver enhancement of tiny (�1 nm) gold particles
conjugated to a secondary antibody, may give a
misleading impression that antigen is sparse
or absent from the PSD, although the technique
is effective for detecting nonsynaptic protein.
Several strategies have been developed to address
the problem. We first focus on proteins that
have been found in the PSD with immunogold
labeling via post-embedding methods, in which
the immune reaction is performed directly
on the EM grid. By exposing antibody only to
the surface of the thin section, this method
provides equal access to all tissue compartments
exposed by the knife, allowing an unbiased

Ultrastructure of Synapses in the Mammalian Brain

Cite this article as Cold Spring Harb Perspect Biol 2012;4:a005587 11

Laboratory Press 
 at UNIV OF TEXAS on January 9, 2015 - Published by Cold Spring Harborhttp://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


Table 1. Dendritic spine and synapse dimensions

Brain region
(cell/spine type)

Spine density
(#/mm dendrite)

Spine volume
(mm3 or fl)

Spine surface
area (mm2)

PSD area
(mm2)

Neck diameter
(mm) References

Adult rats

CA1, SR 2.89# 0.054#

(0.003–0.56)

0.83 + 0.63��

(0.13–4.4)

0.069#

(0.008–0.54)

0.14#

(0.027–0.99)

Harris and Stevens (1988); Megias et al.

(2001); Cooney et al. (2002); Bourne

et al. (2007b); Popov et al. (2007);

Nicholson and Geinisman (2009);

Mishchenko et al. (2010)

CA1, SL-M 0.81# 0.11�a

(0.006–0.52)

0.090�a

(0.018–0.42)

0.166�a

(0.043–0.72)

Megias et al. (2001); Donohue et al (2006);

Nicholson and Geinisman (2009)

CA3 (thorny

excrescences)

1.17 + 0.15��� 15.1# (9.2–35.9) 2.4 + 1.3��b

(0.91–5.1)

Chicurel and Harris (1992); Rollenhagen

et al. (2007); Stewart et al. (2005)

Cerebellum

(Purkinje cells)

4.87�c (2.0–14.3)f 0.12 + 0.02��

(0.06–0.18)

1.12 + 0.18��

(0.69–1.63)

0.15 + 0.08��

(0.04–0.36)

0.20 + 0.04��

(0.09–0.31)

Harris and Stevens (1988); Lu et al. (2009)

Striatum (medium

spiny neurons)

(2.2–4.6) 0.12� (0.04–0.33) 1.46� (0.61–3.14) (0.1–0.5) Wilson et al. (1983)

Lateral amygdala 2.1�d 0.7� (SA2)e

2.2� (SAþ)e

0.05� (SA2)e

0.19� (SAþ)e

Ostroff et al. (2010)

Adult mice

CA1 0.038 + 0.036�� 0.043 + 0.031�� Schikorski and Stevens (1997)

Cerebellum 0.18 + 0.06��

(0.06-0.42)

1.86 + 0.36��

(1.08–3.10)

0.13 + 0.06��

(0.03–0.27)

Spacek and Hartmann (1983)

Visual cortex 0.15# (0.01–0.81) 2.08 + 0.83��

(0.48–4.76)

0.15#

(0.01–0.69)

0.20 + 0.06��

(0.09–0.51)

Spacek and Hartmann (1983); Arellano

et al. (2007)

Barrel cortex 0.45� –0.83� (0.015–0.77) (0.36–4.24) (0.006–0.64) Knott et al. (2006)

Piriform cortex 0.10# 0.098# Schikorski and Stevens (1999)

# Median of the means reported in cited studies.
� Mean.
�� Mean + SD.
��� Mean + SEM (range).
a Mean was calculated across all spine types from the means and sample sizes reported in Nicholson and Geinisman (2009; Table 3).
b Mean + SD was calculated from data reported in Rollenhagen et al. (2007; Table 1) to include all thorny excrescences from two age groups (P28 and P90–120).
c Mean was calculated from data reported in Lu et al. (2009) to include all Purkinje cell dendritic segments receiving granule cell inputs.
d Mean was calculated from data reported in Ostroff et al. (2010, Fig. 2G) to combine all types of spines.
e SA2, spines not containing spine apparatus; SAþ, spines containing spine apparatus.
f Values in parentheses indicate range.
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estimate of antigen distribution. Alternatively,
the immunogold reaction can be performed di-
rectly on biochemically isolated PSDs (“immuno-
gold-PSD”); the disruption associated with
biochemical purification exposes antigen to the
reagents and allows high sensitivity and specific-
ity, although exposure is limited to the exterior
surfaces. A recently developed method provides
similar advantages by performing the immunore-
action on a specially prepared freeze-fractured
replica (“SDS-FRL”) as discussed below.

Proteins in the PSD show a laminar distri-
bution in the orthogonal (“axo-dendritic”) axis
when immunolabeled on ultrathin sections
(Fig. 6A–C) (Valtschanoff and Weinberg 2001;
Petersen et al. 2003), as confirmed by super-
resolution light microscopy (Dani et al. 2010).
The exterior face of the PSD is rich in neu-
rotransmitter receptors and trans-synaptic ad-
hesion molecules embedded within the plasma
membrane. Beneath the receptors resides a dense
matrix of proteins, including scaffold, actin-
binding, and downstream signaling molecules.
Ionotropic glutamate receptors concentrate in
the plasma membrane at the PSD (for review,
see Ottersen and Landsend 1997; Nusser 2000;
Darstein et al. 2003; Masugi-Tokita and Shige-
moto 2007). AMPAR labeling is directly pro-
portional to PSD area, whereas the relationship
between NMDAR labeling and PSD area is
much weaker, implying that the smallest syn-
apses may lack AMPARs completely (Nusser et
al. 1998; Kharazia and Weinberg 1999; Tak-
umi et al. 1999; Racca et al. 2000). The axospi-
nous synapses on Purkinje cells appear to lack
NMDARs but express high levels of the orphan
receptors d1 and d2 (Zhao et al. 1998). Func-
tional AMPARs are tightly linked to accessory
proteins including the Stargazin family of trans-
membrane AMPA regulatory proteins (TARPs)
(Fukaya et al. 2006). A few other membrane-
bound receptors concentrate within the PSD
(e.g., TrkB) (Petralia et al. 2005). Interestingly,
NMDA receptors may be localized more cen-
trally than AMPARs, whereas group I metabo-
tropic glutamate receptors concentrate in an an-
nulus just outside the edge of the PSD (Luján
et al. 1996; Kharazia and Weinberg 1997; Ken-
nedy 2000; Racca et al. 2000). Post-embedding

immunogold has also detected P2X receptors
at the PSD (Rubio and Soto 2001).

The best known group of scaffold proteins
lying within the postsynaptic density is the
PSD-95 family of MAGUK proteins, including
PSD-95, PSD-93, SAP102, and SAP97 (Kim
and Sheng 2004; Feng and Zhang 2009). MA-
GUKs contain several PDZ domains, an SH3
domain, and an (enzymatically dead) guanylate
kinase domain; each domain has characteristic
binding partners. The scaffold proteins con-
centrate in a zone 10–20 nm inside the plasma
membrane (Fig. 6A,B) (Sans et al. 2000; Valt-
schanoff et al. 2000; Valtschanoff and Weinberg
2001) and are fairly uniformly distributed tan-
gentially along the synaptic membrane, except
for SAP97, which concentrates at the edge of
the synapse and is thought to interact selectively
with the AMPAR subunit GluA1. Recent results
using the immunogold-PSD technique confirm
these conclusions within the isolated PSD (De-
Giorgis et al. 2006; Swulius et al. 2010). PSD-95
was originally thought to play a special role in an-
choring NMDARs, but more recent evidence
suggests that PSD-95 may be at least as important
in regulating the surface expression of AMPARs
(Schnell et al. 2002; Ehrlich and Malinow 2004).

Two other multi-PDZ proteins, GRIP (also
known as GRIP1) and ABP (or GRIP2), con-
centrate at the PSD (Srivastava et al. 1998; Wys-
zynski et al. 1999). Both were originally thought
to anchor AMPARs at the PSD, but current evi-
dence points to a role in AMPAR trafficking, as
suggested also by the considerable cytoplasmic
immunogold labeling. The single PDZ-domain
protein PICK1, also implicated in AMPAR traf-
ficking, is located mainly in the cytoplasmic
portion of the PSD (Haglerod et al. 2009).
The GKAP/SAPAP proteins, which can bind
to MAGUK family scaffolds, also lie in this in-
termediate zone of the PSD (Fig. 6A–C) (Nais-
bitt et al. 1997; Petralia et al. 2005), as do CRIPT
and IRSp53, two other MAGUK interacting
proteins (Niethammer et al. 1998; Choi et al.
2005). Coupling to the SAPAP proteins is the
Shank family of scaffold proteins, which lies
on the cytoplasmic margin of the PSD (Naisbitt
et al. 1999; Petralia et al. 2005). Shank proteins,
in turn, can bind to the Homer family (associated
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with metabotropic glutamate receptors) and
concentrate on the cytoplasmic side of the PSD
(Petralia et al. 2005). Together, these multido-
main scaffold proteins compose the structural
“core” of the PSD (Chen et al. 2008).

Numerous other proteins within the PSD
matrix are probably involved in downstream
signaling (Kennedy et al. 2005). Enzymes for
which direct immunogold evidence shows an
association with the PSD include the kinases
CaMKIIa and ErbB4 (Fig. 6D) (Petersen et al.
2003; Petralia et al. 2005) and the tyrosine kinase
interactor liprin-a (Wyszynski et al. 2002); ad-
ditionally, the phosphatases spinophilin, neu-
rabin, and protein phosphatase-1 occur in the
PSD (Muly et al. 2004a,b; Bordelon et al. 2005),
although these enzymes are also present in the
spine cytoplasm. Several small GTPases have
been implicated in synaptic function; immuno-
gold has identified Rab family GTPases (Gerges
et al. 2004; Brown et al. 2005); the small GTPase
activating proteins SynGAP, GIT1, and SPAR
(Ko et al. 2003; Petralia et al. 2005); and the
GTPase exchange factors Tiam1 and BRAG1
(Tolias et al. 2005; Sakagami et al. 2008; Sanda
et al. 2009) in the PSD; likewise, most of these
are also in the spine cytoplasm. Most of these
molecules appear to play a role in synaptic plas-
ticity, as does Arc and the putative synapse-to-
nucleus signaling molecule AIDA-1 (Moga
et al. 2004; Jacob et al. 2010). There is also im-
munogold evidence for several PSD-associated
proteins linked to the actin cytoskeleton includ-
ing a-actinin, cofilin, and cortactin (Wyszynski

et al. 1998; Racz and Weinberg 2004, 2006), as
well as the dynein subunit DLC and the kinesin
KIF1 (Naisbitt et al. 2000; Shin et al. 2003).

Molecular Anatomy beyond the PSD

A host of other ligand-gated receptors and
channels have been identified by pre-embed-
ding methods, mainly concentrated along the
spine plasma membrane, away from the PSD
(but as noted above, these methods may fail to
detect protein within the PSD), including dop-
amine and 5-HT receptors, nicotinic acetylcho-
line receptors, and EphA receptors (Miner et al.
2000, 2003; Riad et al. 2000; Fabian-Fine et al.
2001; Tremblay et al. 2007; Duffy et al. 2009).
New data come from the “SDS-FRL” approach
(sodium dodecyl sulfate-freeze-fracture replica
labeling), in which freeze-fractured tissue is
coated with an inert film of platinum and car-
bon (to protect proteins embedded in the mem-
brane from subsequent digestion in hot SDS,
which removes tissue from the back of the
platinum-carbon replica) before immunolabel-
ing (Fig. 6E). Besides providing superior sensi-
tivity, the SDS-FRL technique is highly specific;
in fact, a number of proteins have been success-
fully immunolabeled only with SDS-FRL. The
method provides a powerful tool for study of
integral membrane proteins, such as receptors
(e.g., the data shown in Fig. 6F,G are from a
quantitative study showing asymmetry in glu-
tamate receptor subtype expression at hippo-
campal synapses [Shinohara et al. 2008]), but

Figure 6. (Continued) (B) The diagram illustrates supramolecular organization of the PSD. Location of each
ellipsoid is according to mean immunogold positions, ellipsoid volumes are proportional to the molecular
weight of each protein, and contacts are shown between proteins known to interact biochemically. (C) Axo-
dendritic positions relative to the postsynaptic plasma membrane (0 nm on the x-axis) of gold particles coding
for three of these proteins (PSD-95, CRIPT, and GKAP). (D) “Immunogold-PSD” labeling for CaMKIIa (or-
ange) on a biochemically isolated PSD (green) viewed en face (top) and with EM tomography from the side,
where the postsynaptic membrane (PM) is at the bottom. (E) The schematic illustrates methods for SDS-FRL:
Freeze-fracture follows the hydrophobic interior of the plasma membrane, and proteins pull to either the exo-
plasmic (E-face) or the cytoplasmic (P-face). After application of a thin platinum/carbon film, the material is
digested in hot SDS, and the replicas are immunogold labeled. (F) Hippocampal CA1 spine synapses in
s. radiatum, labeled by SDS-FRL for the GluR1 and NR1 glutamate receptor subunits, and (G) NR2B and
NR1 subunits (the black line outlines the intramembranous particle aggregate in the E-face). Scale bars,
100 nm. (Panels A–C are from Valtschanoff and Weinberg 2001; reprinted, with permission, from the author;
panel D is from Petersen et al. 2003; reprinted, with permission, from the Journal of Neuroscience# 2001; panels
E–G are modified from Shinohara et al. 2008.)

Ultrastructure of Synapses in the Mammalian Brain

Cite this article as Cold Spring Harb Perspect Biol 2012;4:a005587 15

Laboratory Press 
 at UNIV OF TEXAS on January 9, 2015 - Published by Cold Spring Harborhttp://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


is unsuitable for detecting proteins beyond the
plasma membrane. Both SDS-FRL and stand-
ard pre-embedding techniques have identified
a variety of voltage-dependent potassium chan-
nels in spine membranes, including KV1, KV3,
KV4, Kir3, HCN, BK, and TASK subtypes (Lor-
incz et al. 2002; Luján et al. 2003; Callahan et al.
2004; Notomi and Shigemoto 2004; Burkhalter
et al. 2006; Kulik et al. 2006; Kaufmann et al.
2009; Puente et al. 2010). In addition, several
transporters and pumps have been detected
within the spine plasma membrane, including
glutamate transporters (He et al. 2000), the cal-
cium exchanger NCX1 (Lorincz et al. 2007),
and multiple PMCA isoforms (Burette and
Weinberg 2007; Burette et al. 2009, 2010; Ken-
yon et al. 2010). It seems likely that other pumps
(e.g., the Naþ–Kþ ATPase) are also present, but
immunogold data are not yet available.

A number of signaling and motor-related
proteins are found within the cytoplasm of the
dendritic spine. There is abundant evidence,
including immunogold labeling, for actin (Mo-
rales and Fifkova 1989; Korobova and Svitkina
2010) and, to a lesser degree, also for myosin
(Morales and Fifkova 1989; Petralia et al. 2001).
Mechanisms controlling actin remodeling with-
in the spine are of keen interest because actin
remodeling is implicated in structural neuro-
plasticity and defects are associated with neuro-
developmental disorders (for review, see Carlisle
and Kennedy 2005; Tada and Sheng 2006; Pen-
zes et al. 2008; Kasai et al. 2010; Svitkina et al.
2010). Immunogold methods have identified ava-
riety of actin-binding proteins in the spine cyto-
plasm, including cortactin, profilin, drebrin, and
the Arp2/3 complex (Racz and Weinberg 2004,
2008; Neuhoff et al. 2005; Kobayashi et al. 2007).

Molecular Anatomy of Inhibitory
Postsynaptic Membranes

GABAA receptors are typical heteropentame-
ric ligand-gated channels. They are constituted
from 19 different subunit proteins, allowing
for enormous heterogeneity (Luscher and Keller
2004; Tretter and Moss 2008). Immunogold EM
shows that GABAA receptors concentrate at syn-
apses (Nusser et al. 1996; Bergersen et al. 2003;

Baude et al. 2007; Masugi-Tokita and Shige-
moto 2007), but extrasynaptic receptors are
also present and may be functionally significant.
The number of GABAA receptors at a synapse
(which varies considerably) is directly related
to the magnitude of the inhibitory postsynaptic
current (Nusser et al. 1997). Besides differing in
functional properties, subunit composition
plays a role in targeting receptors to specific
types of synapses (Nyiri et al. 2001; Klausberger
et al. 2002; Serwanski et al. 2006; Baude et al.
2007). The biochemically unrelated GABAB

receptors are G-protein-coupled dimers, whose
functional properties are largely determined by
auxiliary subunits (Pinard et al. 2010); immu-
nogold EM shows their presence in the plasma
membrane at postsynaptic, presynaptic, and non-
synaptic locations (Gonchar et al. 2001; Luján
et al. 2003; Kulik et al. 2006).

Consistent with the classical morphological
descriptions of Gray type II synapses as lacking a
prominent PSD, relatively few intracellular pro-
teins have been linked to inhibitory synapses.
The best known is gephyrin, which is linked
to both GABAergic and glycinergic synapses
(Danglot et al. 2003). Profilin and specific iso-
forms of GRIP associate with the GABAA recep-
tor (Li et al. 2005; Neuhoff et al. 2005; Yu
et al. 2008); the association with GRIP is strik-
ing, since GRIP is usually thought to bind se-
lectively to AMPA receptors. Immunogold evi-
dence that GABAB receptors are associated
with Kir3.2 channels (Kulik et al. 2006) has di-
rect functional implications because inwardly
rectifying potassium channels are important
for the normal function of these receptors.

Smooth Endoplasmic Reticulum
in Dendrites and Spines

Some dendritic spines contain smooth endo-
plasmic reticulum (SER), a membrane-bound
network that is continuous throughout the neu-
ron. Nearly all dendritic spines in cerebellum
contain SER (Fig. 7A,B), and the SER volume
correlates well with total spine volume (Harris
and Stevens 1988a). In contrast, ,15% of den-
dritic spines in hippocampus contain SER, usu-
ally only the largest spines (Fig. 7C) (Spacek and
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spiny dendrite of an interneuron (non). (B) 3D reconstructions of cerebellar dendritic spines (top row, short,
medium, long, and branched) and SER tubules (bottom row) illustrate close correlation between spine and
SER volume. (C) 3D reconstruction of CA1 dendrite SER, which enters only three spines, two of which have
a spine apparatus (SA). (D) The SA has laminated SER (arrows) interspersed with dense-staining material
(wavy lines). (E) Summary diagram of Golgi- and secretory-related molecules found in SA and vesicular com-
partments. (F) SA containing silver-enhanced gold labeling for giantin (red arrowheads), a protein involved in
vesicle trafficking through the Golgi apparatus. (G) Post-embedding immunogold labeling for synaptopodin
(black arrows), an actin-associated protein, in a spine apparatus from a dendritic spine in the s. radiatum
of area CA3. (H ) Post-embedding immunogold labeling for IP3 receptors (red arrowheads) along SER in
a cerebellar spine head (Sp). Scale bar in B is 1 mm and applies to A–C. Scale bars in D, F, G, and H are all
250 nm. (See facing page for legend.)
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Harris 1997). The spine apparatus is an enig-
matic organelle variously suggested to be in-
volved in the regulation of calcium, synthesis
of proteins, and/or posttranslational modifica-
tion of proteins (Fig. 7D). It contains SER ar-
ranged in laminae separated by dense-staining
bars, which contain the actin-binding protein
synaptopodin (Fig. 7G) (Deller et al. 2000). The
spine apparatus also contains numerous pro-
teins, such as giantin, that are known to be in-
volved in vesicular trafficking through the Golgi
apparatus in the soma (Fig. 7E,F) (Pierce et al.
2000, 2001). The SER of cerebellar spines con-
tains high levels of the IP3 receptor, involved
in calcium signaling (Fig. 7H), unlike hippo-
campal and cortical dendritic spines, where IP3
receptors (as well as ryanodine receptors) are
largely confined to SER in the dendritic shaft
(Walton et al. 1991). Interestingly, the amount
of SER varies greatly along the dendritic shaft
(Fig. 7C), in proportion to the size of the spines
emerging along the shaft, at least in hippo-
campus (Spacek and Harris 1997). Whether
the uniform expression of SER in cerebellar den-
dritic spines might explain their relative stability,
in contrast to the plasticity of hippocampal
spines (Bourne and Harris 2007), remains to
be determined.

Polyribosomes in Dendrites and Spines

Ribosomes are needed for local translation in
dendrites (Steward and Schuman 2003; Bram-
ham and Wells 2007) and can be found in a sub-
set of dendritic spines (Fig. 8A). Individual ri-
bosomes are 10–25-nm electron-dense spheres
surrounded by a gray halo; they can be unam-
biguously identified when organized as polyri-
bosomes that form a cluster of three or more
ribosomes, but monosomes are usually not
quantified because they are difficult to distin-
guish from other dark-staining proteins in the

cytoplasm (Fig. 8B). Free polyribosomes, which
synthesize cytoplasmic proteins such as CaM-
KIIa and PSD-95, are more prevalent in spines
after LTP-inducing stimuli (Ostroff et al. 2002;
Bourne et al. 2007a; Bourne and Harris 2010).
Bound polyribosomes associated with endoplas-
mic reticulum synthesize integral membrane
proteins, including receptors. Polyribosomes can
also be found in the vicinity of a spine apparatus
(Fig. 8C) (see also Steward and Reeves 1988),
supporting the hypothesis that the spine appa-
ratus is a Golgi outpost, as described in the
main dendritic shafts of neurons (Horton et al.
2005). The non-uniform distribution of ribo-
somes suggests that different degrees of local
protein synthesis occur along relatively short
dendritic segments, perhaps reflecting local re-
gions of synaptic growth and plasticity.

Endosomal Compartments in Dendrites
and Spines

Reconstruction of serial sections is required to
distinguish the discrete tubules and vesicles of
the endosomal compartments from SER. Fur-
ther clarification came when recycling endo-
somes were shown by their uptake of gold par-
ticles conjugated with bovine serum albumin
(BSA-gold) delivered in the extracellular space
of hippocampal slices (Fig. 9A–D). Quantita-
tive work shows that �50% of normal hippo-
campal dendritic spines contain no membrane-
bound organelles. Some spines contain endo-
somes and some contain SER, but only rarely
does the same spine contain both organelles;
analysis of 3D reconstructions suggests that a
single endosomal sorting complex serves about
10 to 20 hippocampal dendritic spines (Cooney
et al. 2002). Interestingly, the endocytosis-re-
lated proteins clathrin, AP-2, dynamin (Fig.
9E–G) (Racz et al. 2004; Lu et al. 2007), and
an isoform of the exocytosis-related protein

Figure 7. (Continued) (Panels A and B are from Harris and Stevens 1988a; reprinted, with permission, from the
author; panel C is from Cooney et al. 2002; reprinted, with permission, from the author; panel D is from Spacek
and Harris 1997; reprinted, with permission, from the author; panels E and F are from Pierce et al. 2001; re-
printed, with permission, from Elsevier# 2001; panel G is modified from Deller et al. 2000; panel H is modified
from Kelm et al. 2010.)
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syntaxin (Kennedy et al. 2010) are all localized to
a putative endocytic zone lateral to the PSD. En-
dosomal compartments are dynamically regu-
lated during synaptic plasticity and may provide
a local source of new membrane for spine en-
largement (Park et al. 2006). Some endosomal
compartments in dendrites may also be involved
in autophagocytosis, a process in which pro-
teins and other structures are engulfed by a
membrane-bound organelle and incorporated
into the lysosomal pathway for subsequent deg-
radation (Bingol and Sheng 2011).

Trans-Endocytosis via Spinules

Besides the classical mechanisms of synaptic
communication, another path for signaling be-
tween neurons is trans-endocytosis of the plas-

ma membrane via spinules (Spacek and Harris
2004; Richards et al. 2005). Spinules form when
presynaptic axons engulf part of a postsynaptic
dendritic spine (often in the perforation of a
PSD) (Fig. 9H,I); when a neighboring axon
engulfs part of the nonsynaptic membrane of
the spine (Fig. 9I,J); and when perisynaptic
astroglial processes engulf spinules from the
nonsynaptic plasma membrane of a spine (Fig.
9J,K). Intrinsic dendritic recycling via endo-
somes can modify dendritic spine morphology
and composition and may help to redistribute
these membrane resources locally (Fig. 9L).
Trans-endocytosis may also cause remodeling
of dendritic spine and synapse morphology
(Fig. 9M); it may also serve interneuronal signal-
ing between dendritic spines and presynaptic or
neighboring axons (Fig. 9N) and glia (Fig. 9O).

A B

C SA

N S

Figure 8. Ribosomes indicate sites of local protein synthesis. (A) Non-uniform distribution of ribosomes (black
dots) in hippocampal CA1 dendrite and spines (red, PSD surface area). (B) Free polyribosomes (red arrows) and
putative monosomes (blue arrows) in a large mushroom spine with an en face PSD (encircled in red). (C) Poly-
ribosome (red arrow) associated with endoplasmic reticulum of a spine apparatus (SA) in a dendritic spine (S)
adjacent to a neuron (N) in mouse neocortex. Scales, 200 nm. (Panel A is from http://synapses.clm.utexas.edu/
anatomy/ribosome/ribo2.stm; reprinted, with permission, from J. Spacek; panel B is modified from Bourne
et al. 2007a; reprinted, with permission, from the author; panel C is from http://synapses.clm.utexas.edu/anat-
omy/ribosome/ribo3.stm; reprinted, with permission, from J. Spacek.)
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Figure 9. Endocytosis and trans-endocytosis at dendritic spines. (A) SER, small vesicles (sv), and recycling
endosomes; the latter may be identified by their content of gold-BSA endocytosed from the extracellular space
(ECS) into large vesicles (lv), (B) tubules, (C) amorphous vesicular clumps, and (D) multivesicular bodies.
(E–G) Silver-enhanced pre-embedding immunogold identifies three proteins (AP-2, clathrin, and dynamin)
critical for endocytosis; label for all three concentrates close to the spine plasma membrane. To assess their po-
sition with respect to the synapse, the locus of each particle was projected onto the spine plasma membrane as
illustrated in F, allowing computation of a normalized tangential distance along the plasma membrane. (See fac-
ing page for legend.)
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Other Components in Dendritic Spines

Mitochondria are crucial for generation of
ATP and can be important in the regulation of
Ca2þ levels and synaptic plasticity. Hence, their
location may predict sites of enhanced synaptic
activity (MacAskill et al. 2010). Mitochondria
are present along the entire length of dendritic
shafts, but rarely in simple dendritic spines,
such as those found in hippocampal area CA1
or cerebellar cortex. However, mitochondria are
not uncommon invery large and complex spines,
such as the branched spines or “thornyexcrescen-
ces” located on proximal dendrites of CA3 pyra-
midal cells (Chicurel and Harris 1992). In cul-
tured hippocampal neurons, mitochondria have
been observed with live imaging to enter den-
dritic spine-like protrusions during periods of
intense synaptic remodeling (Li et al. 2004).

Microtubules are crucial for trafficking or-
ganelles such as SER and vesicles, as well as for
the trafficking of certain proteins and mRNAs.
Tubulin has been detected in PSD fractions;
however, microtubules are not readily observed
through serial section electron microscopy in
mature hippocampal, cortical, orcerebellar den-
dritic spines under normal conditions. Micro-
tubules do occur normally in the extra-large
CA3 thorny excrescences (Chicurel and Harris
1992) and in hippocampal and cortical den-

dritic spines during development, apparently
emanating from the spine apparatus (Westrum
and Gray 1977; Westrum et al. 1980). During
the short period of synaptic quiescence after
making a hippocampal slice, microtubules pro-
trude into mature dendritic spines; however,
these spine microtubules are no longer detected
by 30 min after the slice has recovered in vitro
(Fiala et al. 2003). Recent work in hippocampal
cultures suggests that microtubules are highly
dynamic and rapidly enter and retract from den-
dritic spines (Gu et al. 2008; Hu et al. 2008; Ja-
worski et al. 2009; Dent et al. 2011), such that at
any one moment fewer than 1% of spines may
contain a microtubule. This transience, along
with the sensitivity to calcium (see “Other Axo-
nal Components” above), may explain why mi-
crotubules are rarely detected in a polymerized
state in mature dendritic spines of aldehyde-
fixed brain in vivo.

SUMMARY

In this article, we have described the diverse
structure and composition of presynaptic axons
and postsynaptic spines. Postsynaptic size is pro-
portional to presynaptic vesicle content, and
larger dendritic spines contain more of the sub-
cellular organelles needed to remodel and sustain

Figure 9. (Continued) As shown for clathrin in G, each of these endocytic proteins concentrated in a sector of the
spine lying roughly halfway between the edge of the PSD and the point on the spine plasma membrane closest to
the spine neck opposite to the PSD (illustrated as “1” in the inset) (for further description, see Racz et al. 2004).
(H ) Spinule (blue) emerging from the middle of a perforated PSD (triangle) on a dendritic spine head; this spi-
nule is engulfed by the plasma membrane of the presynaptic axon. (I) 3D reconstruction of the spinule in H
(blue), and also a second smaller spinule (purple) being engulfed by a neighboring axon, not shown). (J ) Spi-
nule from a dendritic spine (purple arrow, top) being engulfed by a perisynaptic astroglial process (light blue),
and a second smaller spinule from a different spine (purple arrowhead, bottom) being engulfed by a neighboring
axon (green), similar to the purple reconstruction in I. (K) 3D reconstruction of the astroglial-engulfed spinule
shown on a single section in J (spinule [purple], astroglial process [light blue], spine [tan], PSD [red]). (L–O)
Contrasting endocytosis and trans-endocytosis. (L) A single MVB-tubular sorting complex in the dendritic
shaft serves multiple dendritic spines, where coated pits and vesicles are endocytosed from some spines, and
small vesicles bud off (also via coats) from tubular endosomes, to be exocytosed at the plasma membrane of
neighboring spines. (M) Trans-endocytosis from a spine to the presynaptic axon may serve to transmit signaling
molecules or to remove perforations following sustained presynaptic activation. (N) Trans-endocytosis by
neighboring axons may reflect competition for the postsynaptic spine. (O) The function of trans-endocytosis
by neighboring astroglial processes is unknown. Scales, (A–D, H–K) 500 nm; (E, F) 200 nm. (Panels A–D
and L are from Cooney et al. 2002; reprinted, with permission, from the authors; panels E–G are from Racz
et al. 2004; reprinted, with permission, from the authors; and panels H–K and M–O are from Spacek and Harris
2004; reprinted, with permission, from the authors.)
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synapses. Synaptic structure is static in electron
micrographs, but accumulating evidence shows
that the synapse is highly dynamic in vivo,
undergoing dramatic changes in gross morphol-
ogy and intracellular organization, especially in
response to conditions that elicit sustained
changes in synaptic efficacy. The structure and
composition of synapses canvaryacross brain re-
gions and may change during development, ma-
turation, normal aging, neurological disorders,
and trauma. A deeper appreciation of this struc-
tural diversity and plasticity is leading to new in-
sight into the processes that govern synapse for-
mation, growth, maintenance, and elimination,
topics that will be pursued in other articles in
this collection.
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