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SUMMARY

In the cerebral cortex, GABAergic interneurons are
often regarded as fast-spiking cells. We have identi-
fied a type of slow-spiking interneuron that offers dis-
tinct contributions to network activity. ‘‘Ivy’’ cells,
named after their dense and fine axons innervating
mostly basal and oblique pyramidal cell dendrites,
are more numerous than the parvalbumin-express-
ing basket, bistratified, or axo-axonic cells. Ivy cells
express nitric oxide synthase, neuropeptide Y, and
high levels of GABAA receptor a1 subunit; they dis-
charge at a low frequency with wide spikes in vivo,
yet are distinctively phase-locked to behaviorally rel-
evant network rhythms including theta, gamma, and
ripple oscillations. Paired recordings in vitro showed
that Ivy cells receive depressing EPSPs from pyrami-
dal cells, which in turn receive slowly rising and de-
caying inhibitory input from Ivy cells. In contrast to
fast-spiking interneurons operating with millisecond
precision, the highly abundant Ivy cells express pre-
synaptically acting neuromodulators and regulate
the excitability of pyramidal cell dendrites through
slowly rising and decaying GABAergic inputs.

INTRODUCTION

The activity of cortical neurons is embedded in network oscilla-

tions, which constitute a function of ongoing network operations,

that are associated with behavior and the state of vigilance (Ster-

iade et al., 2001). In the hippocampus, theta oscillations (4–

10 Hz) occur during exploration and rapid eye movement sleep

(Vanderwolf, 1969), together with gamma oscillations (30–80 Hz)

(Csicsvari et al., 2003), which also correlate with working mem-

ory, conceptual categorization, attention, and perception (Singer

and Gray, 1995). Sharp wave-associated ripples (100–200 Hz)

occur in the hippocampus during consummatory behaviors
and slow-wave sleep, and structure temporally compressed re-

play of waking neuronal activity (Buzsaki et al., 1983; Foster and

Wilson, 2006; O’Keefe and Nadel, 1978). The different network

states also require differential global state-dependent modula-

tion, which is mostly provided by subcortical aminergic, choli-

nergic, GABAergic, and thalamic inputs. However, local slow

signals may also make a contribution to regulating networks

states, as can be assumed from the expression of a large num-

ber of neuropeptides by cortical neurons (Freund and Buzsaki,

1996). Oscillations in pyramidal cells (Soltesz and Deschenes,

1993) are shaped by the differential contribution of specialized

GABAergic interneuron classes (Csicsvari et al., 1999; Klaus-

berger et al., 2003).

In the cerebral cortex, different classes of GABAergic cell tar-

get specific subcellular domains of pyramidal cells (Ali et al.,

1998; Miles et al., 1996; Somogyi and Klausberger, 2005). For

example, basket cells innervate somata and proximal dendrites,

whereas axo-axonic cells exclusively target axon-initial seg-

ments, and hippocampal bistratified cells innervate basal and

oblique pyramidal cell dendrites (Somogyi et al., 1998). Similarly,

cortical neuronal diversity has been explored on the basis of fir-

ing patterns; fast-spiking cells are recognized as interneurons

(Connors et al., 1982; Ranck, 1973; Schwartzkroin and Kunkel,

1985), whereas some pyramidal cells are identified by their

adapting firing patterns in the cortex (McCormick et al., 1985)

or high-frequency bursts in the hippocampus (Ranck, 1973).

As a result, most studies using extracellular unit recordings in be-

having animals (Csicsvari et al., 1999) define interneurons by

their narrow spike width and exclude slow-spiking units (Nitz

and McNaughton, 2004) (e.g., firing rate <5 Hz). Immunohisto-

chemical studies and gene expression profiles have distin-

guished interneuron populations according to the expression

of molecular markers such as parvalbumin (PV)-, somatostatin

(SM)-, cholecystokinin (CCK)-, or calretinin (CR)-immunoreactiv-

ities (Kawaguchi and Kondo, 2002; Toledo-Rodriguez et al.,

2004). The electrophysiological and neurochemical characteris-

tics of some interneurons have been found to correlate. For ex-

ample, PV-expressing interneurons in the hippocampal CA1 py-

ramidal cell layer (basket, bistratified, and axo-axonic cells) often
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display a fast-spiking pattern of firing (Somogyi and Klausberger,

2005). Many studies have concentrated on these cells through-

out the cortex, but they may not represent the majority of

GABAergic neurons, since large populations of interneurons

expressing neuropeptide Y (NPY) (Allen et al., 1983) or the

neuronal nitric oxide (NO) synthase isoform (nNOS) (Czeh

et al., 2005; Jinno and Kosaka, 2002) have also been reported.

NO and NPY are implicated in regulating excitability and synaptic

plasticity (Arancio et al., 1996; Colmers et al., 1987), yet little is

known about the neuronal identity of their sources.

In the present study we have tested the hypothesis that NPY-

and nNOS-expressing cells make contributions to network activ-

ity that are different from those made by PV-expressing interneu-

rons. Furthermore, we have identified these cells based on their

axo-dendritic distributions, their firing patterns, and the proper-

ties of their synaptic inputs and outputs, and we have quantified

their abundance in relation to PV-expressing cells.

RESULTS

Cells Coexpressing nNOS and NPY form a Large
Interneuron Population in the Hippocampus
We tested the abundance of nNOS- or NPY-expressing cells rel-

ative to PV-positive interneurons in the rat hippocampal CA1

area using the optical disector method and confocal laser scan-

ning microscopy (Figure 1). In a triple immunoreaction, cells co-

expressing nNOS and NPY were the most abundant population

(37%), larger than the population expressing only PV (basket and

axo-axonic cells, 26%) or PV and NPY (including bistratified

cells; 15%) (Figure 1B and Table S1 available online). All NPY

and nNOS coexpressing cells were PV immunonegative. The so-

mata of the majority of these cells were located in stratum pyra-

midale and adjacent stratum radiatum, consistent with previous

reports on nNOS (Czeh et al., 2005; Jinno and Kosaka, 2002).

Further quadruple immunolabeling (Figure S1, available online,

and Table S2) showed that all NPY and nNOS coexpressing cells

were strongly immunopositive for the a1 subunit of the GABAA

receptor (GABAAR-a1) along the plasma membrane (n = 382),

but less than 5% of NPY and nNOS coexpressing cells were im-

munopositive for CR, calbindin (CB), or SM (cells evaluated:

n = 123, 148, and 137, respectively), similar to previous results

on nNOS distribution (Czeh et al., 2005; Jinno and Kosaka,

2002). In addition, the somata of 75% of NPY and nNOS coex-

pressing cells in stratum pyramidale (n = 134) were also strongly

immunolabeled in their somata for a-actinin-2, a cytoskeletal

protein involved in cell signaling (Figure S1 and Table S2). Qual-

itative visual inspection revealed large populations of interneu-

rons coexpressing NPY, nNOS, and GABAAR-a1 in other regions

of the hippocampus (CA2 and CA3 areas, dentate gyrus), and in

extra-hippocampal cortical regions (subiculum, somatosensory

cortex, and entorhinal cortex). Overall, these results reveal the

existence of a major and distinct population of nNOS-, NPY-,

and GABAAR-a1-expressing interneurons.

Distinctive Dendritic and Axonal Arborizations
Define the Ivy Cell
To determine the spike timing and axo-dendritic identity of NPY

and nNOS coexpressing cells, we recorded interneurons in stra-
918 Neuron 57, 917–929, March 27, 2008 ª2008 Elsevier Inc.
tum pyramidale of anaesthetized rats and labeled them by the

juxtacellular method for histological analysis. Four nNOS-ex-

pressing cells (P2a, T98e, T134a, and T140b) were recorded

with their somata located in stratum pyramidale (Figure 2A).

The soma area measured in the largest cross-section ranged

from 87 to 145 mm2, with the long axis between 13 and 19 mm

and the short axis between 8 and 15 mm; the somata emitted

five or six primary dendrites. The smooth, radially oriented den-

drites (total extent: medio-lateral, 0.21 ± 0.05 mm; rostro-cau-

dal, 0.35 ± 0.06 mm) rarely reached the border of stratum lacu-

nosum-moleculare. The main axons profusely branched close to

their origin, providing uncommonly dense, thin branches with

minuscule varicosities, and extended 0.75 ± 0.12 mm in the me-

dio-lateral and 1.31 ± 0.11 mm in the rostro-caudal directions.

This cell type is distinguished by the exceptionally dense and

fine axonal arborization close to the soma in strata oriens, radi-

atum, or both, and due to the resemblance of the axonal pattern

to the ivy plant, so abundant in the English countryside, this in-

terneuron type was named the ‘‘Ivy’’ cell. The axons of Ivy cells

innervated strata radiatum and oriens to varying degrees

(Figure 3A).

Due to the overlap in layer preference of the axonal arboriza-

tions of Ivy cells and the previously reported PV-expressing bis-

tratified cells (Buhl et al., 1994; Klausberger et al., 2004; Pawel-

zik et al., 2002), we compared their axons quantitatively. The

two-dimensionally projected axonal length was measured for

every cell in three 100 3 100 mm squares in stratum oriens

and proximal and distal stratum radiatum in a 70-mm-thick sec-

tion containing the soma (Figure 3A). The squares were centered

radially in line with the soma. The total projected axonal length of

Ivy cells in the measured areas (2140 ± 325 mm; n = 4) was sig-

nificantly longer (p = 0.016) than that of bistratified cells (954 ±

68 mm; n = 5, cells reported previously) (Klausberger et al.,

2004). Ivy cells concentrated their axons next to stratum pyrami-

dale, and thus axonal length quickly decreased as a function of

distance from the soma. Conversely, the axonal fields of bistra-

tified cells were more homogeneous across stratum radiatum,

and somewhat sparser in stratum oriens (Figure 3A). The pro-

jected axonal length of Ivy cells in stratum oriens was ten times

greater than that of bistratified cells (Figure 3A), a finding which

suggests a massive difference in axon density between the two

cell types.

Random samples of axons from three Ivy cells were further

evaluated by electron microscopy to identify their postsynaptic

targets. In contrast to most interneuron axons, the thin axons

of Ivy cells had rather insignificant boutons containing a modest

number of vesicles and infrequent mitochondria. In addition,

vesicles were frequently found in preterminal axons away from

synaptic specializations. The areas of presynaptic boutons

from Ivy cells (n = 9 for P2a; n = 13 for T134a; n = 10 for

T140b) and bistratified cells (n = 9 for T79e; n = 9 for T92a; n =

10 for T96b) were measured with electron microscopy from

one 70-nm-thick section containing the synaptic specialization.

The bouton areas of Ivy cells (100.6 ± 53.4 3 103 nm2) were sig-

nificantly smaller (p < 0.0001) than those of bistratified cells

(198.5 ± 93.2 3 103 nm2).

The randomly sampled synapses (n = 11 for P2a; n = 13 for

T134b; n = 10 for T140b) had small synaptic junctions targeting
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mainly dendritic shafts (81%, Figures 3E and 3H) of pyramidal

cells, including basal dendrites in stratum oriens and oblique

dendritic shafts in stratum radiatum. Both basal and oblique den-

drites are also innervated by PV-expressing bistratified cells. The

mean diameter of pyramidal cell dendrites postsynaptic to Ivy

cells was 0.49 ± 0.25 mm (n = 28), and not significantly different

(p = 0.052) from the targets of bistratified cells (0.58 ± 0.13 mm,

n = 27). Dendritic spines (13%) and apical dendrites of pyramidal

cells (6%) were less frequent postsynaptic targets. Interneurons

were not found among the synaptic targets in the random sam-

ple, and the identity of two postsynaptic targets could not be un-

equivocally determined.

In addition to the random sample, we specifically tested po-

tential postsynaptic targets of Ivy cell T134a in the pyramidal

cell layer. Of the 20 axonal varicosities examined in serial elec-

tron microscopic sections, five could be shown to establish syn-

aptic junctions, three with small dendritic shafts and two with so-

mata of pyramidal cells. Because only a small fraction of the

axon was within the pyramidal cell layer, somata comprise only

a small proportion of the overall targets of this cell.

Molecular Expression Profiles of Identified Ivy Cells
The labeled Ivy cells were tested for the expression of various

molecular cell markers involved in intercellular signaling using

immunofluorescence microscopy (Table 1). All four Ivy cells

were immunopositive for nNOS in their somata (Figure 2C),

proximal dendrites, or axons (Figures 3C and 3D). Three tested

Ivy cells were immunopositive for NPY (soma), GABAAR-a1

(somato-dendritic plasma membrane), and GAD (axon), con-

firming their identity as GABAergic interneurons (Figure 2C,

Figure S2, and Table 1). None of the four cells expressed PV

or SM, differentiating them from bistratified cells (Klausberger

et al., 2004; Pawelzik et al., 2002). Furthermore, the tested

Figure 1. Abundance of nNOS- and NPY-Express-

ing Interneurons in the Hippocampus

(A) Epifluorescence micrograph illustrating the abundance

of neuronal nitric oxide synthase (nNOS) immnunolabeled

cells in the dorsal CA1 area. Most cells are located in and

around stratum pyramidale.

(B) Unbiased quantification of interneurons immunoreac-

tive for PV or nNOS and/or NPY in coronal sections of stra-

tum pyramidale (st. pyr.) and the entire dorsal CA1 area (all

layers). PV-expressing cells in the stratum pyramidale in-

clude basket and axo-axonic cells, which are negative

for NPY, and bistratified cells, which are positive for

NPY. Note that nNOS and NPY double-positive cells con-

stitute the largest group.

(C) Confocal fluorescence micrographs showing immuno-

labeling for PV, nNOS, and NPY at the border of strata pyr-

amidale and oriens.

Scale bars: (A), 100 mm; (C), 20 mm.

cells were immunonegative for CCK, CB, va-

soactive intestinal polypeptide (VIP), CR, mus-

carinic acetylcholine receptor 2, metabotropic

glutamate receptor 1a (mGlur1a), a-actinin-2

(one cell tested), m-opioid receptor, preprota-

chykinin A or B, the Kv3.1b subunit of K+

channel, and metabotropic glutamate receptor 8a (mGlur8a)

in their input terminals (Table 1).

Firing Patterns of Ivy Cells during Network Oscillations
in Anaesthetized Rats
The firing of four identified Ivy cells was recorded during theta os-

cillations (4.2 ± 0.1 Hz), gamma oscillations (39.6 ± 1.5 Hz), and

sharp wave-associated ripples (118 ± 5.7 Hz). The four Ivy cells

discharged at similar frequencies (p = 0.276, Kruskal-Wallis

test) during theta oscillations, non-theta/non-sharp wave periods,

and sharp wave-associated ripples (0.7 ± 0.7, 1.7 ± 0.3, and 0.8 ±

1.1 Hz, respectively; Table S3), but discharge rates of single cells

varied considerably within the same brain state (Figure S3).

Although discharge frequencies were low, Ivy cells showed

clear phase preferences during hippocampal rhythms. They fired

after the trough (30.7� ± 63.1�, mean angle ± angular deviation;

0� and 360� mark the trough) of the theta cycles recorded extra-

cellularly in stratum pyramidale (Figure 4A, Table S3), just after

the maximum discharge probability of pyramidal cells (Csicsvari

et al., 1999; Klausberger et al., 2003). Phase preference, dis-

charge frequency, and probability were all significantly different

from those of bistratified cells (Figure S3). Like pyramidal cells

(Csicsvari et al., 2003), recorded Ivy cells fired in a sparse (0.7

± 0.6 Hz) yet phase-modulated way (Rayleigh test, p < 0.01; r

= 0.29 ± 0.07), which correlated with the troughs of gamma

oscillations (10.6� ± 68�, Figure 4B). When Ivy cell firing during

ripple oscillations was compared with their firing during neigh-

boring non-theta/non-sharp wave episodes, it did not differ

significantly in rate (Figure 4C). However, Ivy cells remained

silent during the large majority of ripple episodes (>90%,

Figure S3).

The action potentials recorded from Ivy cells were unusually

broad for interneurons; we compared them here with the spikes
Neuron 57, 917–929, March 27, 2008 ª2008 Elsevier Inc. 919
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Figure 2. Firing Patterns, Molecular Characteristics, and Spatial Distribution of an Ivy Cell Recorded In Vivo

(A) Schematic sagittal view (top left) of the axonal (yellow) and dendritic (orange) fields and reconstruction in the coronal plane of a neurobiotin-labeled Ivy cell

(P2a). The soma and dendrites are shown from all sections; the axon is presented only from three 70-mm-thick sections for clarity. Note the very dense axon in

stratum oriens. A pyramidal cell (T57d, blue) recorded in another animal is added for illustrating spatial relationships. (Bottom left) Scaled, superimposed extra-

cellular action potential waveform averages from the Ivy cell (orange) and pyramidal cell (blue) with similar shape and time course.

(B) The Ivy cell discharged sparsely but phase locked to the trough of the extracellularly recorded theta (filtered 3–6 Hz, top) and gamma (filtered 30–80 Hz, bot-

tom) oscillations in stratum pyramidale.

(C) Fluorescence micrographs showing immunoreactivity for nNOS and NPY in the soma, and for the a1 subunit of the GABAA receptor in a dendrite.

Scale bars: (A), 100 mm, 1 ms; (B), filtered 0.2 mV, units, 0.5 mV; theta, 200 ms; gamma, 20 ms; (C), 10 mm.
of eight fast-spiking bistratified cells also recorded in vivo and re-

ported previously (Klausberger et al., 2004) (Figure 4D). Spike

duration (baseline-to-baseline; p = 0.003; 1.82 ± 0.45 and

0.95 ± 0.19 ms, for Ivy and bistratified cells, respectively) and

width at maximal amplitude (positive peak to negative peak;

p = 0.004; 0.56 ± 0.12 and 0.28 ± 0.01 ms, for Ivy and bistratified

cells, respectively) were significantly longer lasting in Ivy than in

bistratified cells, although there was no difference in action poten-

tial amplitude (positive peak to negative peak; p = 0.414; 1.12 ±

0.18 and 1.66 ± 0.80 mV, for Ivy and bistratified cells, respec-

tively). Further comparison established that the main difference

between spike waveforms was in the decaying phase (10%–

90% slope; p = 0.004; �3.23 ± 1.18 and �8.02 ± 3.72 mV/ms,

for Ivy and bistratified cells, respectively) and not in the rising

phase (10%–90% slope; p = 0.414; 2.22 ± 0.71 and 2.91 ±

1.22 mV/ms, for Ivy and bistratified cells, respectively), a result
920 Neuron 57, 917–929, March 27, 2008 ª2008 Elsevier Inc.
that is consistent with the presence of more slowly repolarizing

K+ currents in Ivy cells. This difference might be due, at least par-

tially, to the absence of the Kv3.1b subunit in these cells (Table

1), a subunit that is expressed by most PV-containing cortical

interneurons, including bistratified cells, and which contributes

to their characteristic fast-spiking pattern (Martina et al., 1998;

Rudy and McBain, 2001). A relatively low discharge frequency

(Table S3) and broad spike width (Figure 4D) identify Ivy cells

as slow-spiking GABAergic interneurons.

Firing Patterns of Putative Ivy Cells in Behaving Rats
To test whether interneurons with firing patterns similar to those

of Ivy cells can be recognized in the pyramidal cell layer of non-

anaesthetized animals, neuronal spiking activity was recorded

with tetrodes in behaving animals. Sixteen interneurons were se-

lected according to their spike timing around the trough of theta
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Figure 3. Axonal Arborizations and Synaptic Targets of Ivy Cells

(A) Axonal distributions of Ivy cells (n = 4) and bistratified cells (n = 5) are significantly different (*p = 0.016). Axons were sampled in defined areas (see text) of

stratum oriens (str. or.), proximal stratum radiatum (str. rad. prox.), and next to stratum lacunosum-moleculare in distal stratum radiatum (str. rad. dist.) from

one 70-mm-thick section containing the soma. Bars represent means, and symbols, individual measurements. The axonal sample of Ivy cells in stratum oriens

was one order of magnitude higher than that of bistratified cells (1.604 ± 0.564 and 0.148 ± 0.033 mm, respectively). The Ivy cell (T134a) with the lowest amount of

axon in stratum oriens had the highest amount in stratum radiatum (gray line). (B) Confocal immunoflourescence image showing a dense cloud of nNOS- and

NPY-expressing, fine axons in stratum oriens. (C and D) Confocal immunoflourescence images showing the filled axon of Ivy cell P2a, which is immunopositive

for nNOS. (E) Serial section reconstruction (12 70-nm-thick sections) of the Ivy cell bouton (blue) shown in (F) making a synapse (purple) onto a small dendritic

shaft (yellow) emitting multiple spines, some of them with visible type I synapses on their head (turquoise) appearing in this orientation. Dashed regions indicate

cut surfaces. Inset in (F) shows the synaptic cleft and the small synaptic junction. (G and H) Electron micrographs of horseradish peroxidase product-labeled

boutons of recorded Ivy cells. The boutons make small type II synaptic junctions (arrow) with small dendritic shafts either in stratum oriens ([G], cell P2a) or

in stratum radiatum ([H], cell T134a). The small pyramidal cell dendrite in (H) emits a spine that receives a type I synapse. Scale bars: (B)–(D), 5 mm; (E)–(H),

200 nm; (F) inset, 100 nm.
waves and the absence of significant changes in firing during rip-

ple episodes. Further analysis showed that 8 out of those 16 cells

exhibited slow spikes with more than 0.25 ms half-width (see Ex-

perimental Procedures) (Figure 5). The lack of complex spike

bursts, as indicated by the first moment of their autocorrelogram,
confirmed the eight units to be putative interneurons rather than

pyramidal cells, and therefore these eight interneurons resemble

identified Ivy cells recorded in anaesthetized animals. Interest-

ingly, the discharge frequencies of all eight cells were low

and, on average, similar during different brain states (2.4 ± 1.8;
Neuron 57, 917–929, March 27, 2008 ª2008 Elsevier Inc. 921
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6.7 ± 9.7, and 3.0 ± 3.6 Hz during theta, ripple, and non-theta/

non-sharp episodes, respectively; p = 0.543, Kruskal-Wallis

test; Figure 5), consistent with the findings in identified Ivy cells.

The relatively low number of Ivy cells identified compared with

the number of fast-spiking interneurons observed here might

be explained by the spike sorting analysis, which favors the clus-

tering of units with high discharge rate. This is also reflected by

the strongly biased ratio of fast-spiking interneurons to pyrami-

dal cells, which also fire at low discharge rates. Overall, our re-

sults show that slow-spiking interneurons in the CA1 pyramidal

cell layer with characteristics similar to those of Ivy cells can

be recognized in behaving animals.

Synaptic Transmission and Input-Output Organization
of Ivy Cells
To study the intrinsic membrane properties of Ivy cells and their

synaptic connections with neighboring CA1 pyramidal cells, dual

intracellular recordings with sharp electrodes and biocytin-label-

ing were made in slices of adult rat hippocampus. Five Ivy cells

were identified by their fine, dense axons, absence of large axo-

nal varicosities, and short dendritic arbors (Figure 6A). The soma

area in the largest cross-section (range, 109–262 mm2) using the

long (range, 13–23 mm) and short (range, 10–15 mm) axis, number

of primary dendrites (five to seven), and density of axons as mea-

sured with axonal length (range, 2.0–3.5 mm) in defined areas as

described for in vivo filled cells were measured in four of the re-

corded cells and are all comparable to the values obtained from

Ivy cells recorded in vivo. The one putative Ivy cell tested was im-

munopositive for nNOS, and four Ivy cells tested were immuno-

negative for PV, supporting the axon-based classification (data

not shown). Ivy cells exhibited delayed, stuttering, and adapting

Table 1. Molecular Expression Profile of Ivy Cells as Tested by

Immunocytochemistry

Cell P2a T98e T134a T140b

nNOS + + + +

NPY + nt + +

GABAAR a1 + nt + +

GAD + + nt +

PV - - - -

SM - - - -

CCK - nt - -

CB - - - nt

VIP nt - - -

CR - nt - nt

Kv3.1b - nt nt -

M2 receptor - - nt nt

PPTA - nt - nt

PPTB nt nt - -

mGluR1a - nt nt nt

mGluR8a nt - nt nt

a-actinin-2 - nt nt nt

m-opioid receptor - nt nt nt

M2, muscarinic receptor 2; nt, not tested; PPTA, pre-protachikinin-A;

PPTB, pre-protachikinin-B.
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firing patterns (Figure 6B), similar to those of other interneurons,

but maximum firing rates were low and their action potentials

much broader (width at half amplitude, 0.8 ± 0.2 ms) than those

of fast-spiking cells such as bistratified cells (0.4 ± 0.1 ms, p =

0.005). These findings are consistent with extracellular record-

ings and provide another independent parameter for cell identi-

fication. Spike afterhyperpolarizations were similar in amplitude

in the two cell types (Table 2), but six times broader in Ivy cells

(width at half amplitude, 71.6 ± 38.8 ms) than in bistratified cells

(12.3 ± 13.6 ms; p = 0.003).

Three of the five Ivy cells elicited inhibitory postsynaptic po-

tentials (IPSPs) in simultaneously recorded pyramidal cells, and

in four Ivy cells simultaneously recorded pyramidal cells elicited

excitatory postsynaptic potentials (EPSPs), one pair being recip-

rocally connected. At excitatory connections from pyramidal

cells, average EPSP amplitudes, failure rates, and short-term de-

pression in Ivy (Figure 6D) and bistratified cells were similar, as

were the average frequencies and amplitudes of spontaneous

EPSPs (Table 2). The EPSPs elicited in Ivy cells, however, were

significantly broader (width at half amplitude, 11.5 ± 1.5 ms)

than those in bistratified cells (6.4 ± 2.7 ms; p = 0.016; Table 2)

and O-LM cells (Ali and Thomson, 1998), though narrower than

those elicited at pyramidal-pyramidal cell connections in CA1

(Deuchars and Thomson, 1996). Average IPSP amplitudes and

widths at half amplitude were similar for Ivy and bistratified cell

IPSPs (Table 2), but the rise times of IPSPs elicited by Ivy cells

were significantly slower (12.5 ± 1.6 ms) than those of bistratified

cell IPSPs (8.4 ± 3.2 ms; p = 0.014). No significant jitter in the on-

set latency of IPSPs, or any correlation between single-sweep

IPSP amplitude and rise time, was observed (data not shown).

Like many IPSPs recorded in mature pyramidal cells, the IPSPs

elicited by Ivy cells exhibited short-term depression (Ali et al.,

1998) (Figure 6E).

In order to investigate nNOS and NPY coexpressing cells lo-

cated in CA1 stratum radiatum, we performed targeted whole-

cell recordings (n = 46) and identified five Ivy cells with somata

located in this layer (Figures S4 and S5). These cells had very

dense axons mainly in stratum radiatum, and all five cells had ra-

dially extending dendrites in stratum radiatum. Four of these

cells were tested for the expression of nNOS, and all four were

found immunopositive; three out of three tested Ivy cells were

immunopositive for NPY, and all five cells were immunonegative

for the cannabinoid receptor CB1 (Figure S4, Table S5). Ivy cells

in stratum radiatum generated broad action potentials with fre-

quency adaptation. We compared the membrane responses of

the five Ivy cells with those of CCK and CB1 coexpressing basket

cells (n = 5), which constitute a well described cell class in this

layer. The action potential half-width (1.04 ± 0.17 ms) and after-

hyperpolarization half-width (33.6 ± 7.1 ms) of the five Ivy cells

were significantly different (p = 0.008 and p = 0.016, respectively)

from those of CCK-expressing basket cells (0.74 ± 0.09 ms;

59.4 ± 25.4 ms; additional measurements are stated in Table

S5). In addition, we recorded unitary inhibitory postsynaptic

currents (uIPSCs) in CA1 pyramidal cells evoked by Ivy cells

with somata in stratum radiatum. Out of 21 attempts, we ob-

tained 6 synaptically coupled interneuron-pyramidal cell pairs;

two of the interneurons were identified as Ivy cells (Figure S5

and Table S5). The slow IPSCs evoked by the Ivy cells were small
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Figure 4. Firing Patterns of Identified Ivy Cells during Spontaneous

Oscillations in Anaesthetized Rats

(A–C) (Left) Examples of the local field potential (LFP) filtered 0.3–300 Hz, or fil-

tered for (A) theta oscillations (3–6 Hz), (B) gamma oscillations (30–80 Hz), or

(C) sharp wave-associated ripples (90–140 Hz). (Left bottom) Single-unit activ-

ity (filtered 0.8–5 kHz) from an identified Ivy cell (T134a). The cell fired sparsely

around the trough of the theta and gamma cycles. (Right) Phase histograms for

four Ivy cells (colored traces) during (A) theta, (B) gamma, and (C) ripple oscil-

lations; the normalized average phase distribution is shown in gray. For clarity,

the same data are repeated in two cycles. The troughs of the extracellularly re-

corded oscillations are at 0�, 360�, and 720�; bin size is 18�. During ripple ep-

isodes (normalized times) the average firing probability of Ivy cells did not

change relative to preripple and postripple periods. The onset, highest ampli-

tude, and end of normalized ripple episodes are marked as �1, 0, and 1, re-

spectively (dotted lines).

(D) (Left) Average extracellular action potential waveforms of identified Ivy cells

(red, n = 4) and bistratified cells (green, n = 8). (Right) Spike waveform grand

averages from Ivy cells (red) and bistratified cells (green) peak-scaled for

time course comparison. The difference in duration was statistically significant
in amplitude (9.9 and 6.1 pA) and had a slow 10%–90% rise time

(3.0 and 2.6 ms) and long half-width (17.8 and 15.8 ms) and

decay time (13.6 and 18.5 ms). A comparison with faster uIPSCs

evoked in CA1 pyramidal cells by CCK-expressing cells in

stratum radiatum (n = 2) is shown in Table S5 and Figure S5.

DISCUSSION

Ivy Cells Constitute a Major and Distinct Neuronal
Class in the Hippocampus
The knowledge of the powerful modulatory effects of NO and

NPY on neuronal activity (Bacci et al., 2002; Burette et al.,

2002; Colmers et al., 1987; Makara et al., 2007; Nugent et al.,

2007) sharply contrasts with the little that is known about the

identity of the large populations of nNOS- or NPY-expressing

neurons (Allen et al., 1983; Czeh et al., 2005; Jinno and Kosaka,

2002). We have shown that interneurons coexpressing nNOS

and NPY are more numerous in the CA1 pyramidal cell layer

than any of the PV-expressing interneuron types, including the

widely studied basket, axo-axonic, and bistratified cells (Ali

et al., 1998; Buhl et al., 1994; Freund and Buzsaki, 1996; Fuchs

et al., 2007; Jonas et al., 2004; Kawaguchi and Kondo, 2002; Pa-

welzik et al., 1999; Pawelzik et al., 2002). The spike timing during

network oscillations, slow-firing characteristics, distinctive axo-

nal arbors, and molecular constitution of these neurons led us

to define a cell type, which we have named the Ivy cell. Although

only a few Ivy cells could be labeled during electrophysiological

recordings, the remarkable homogeneity of the multiple param-

eters measured in these cells, together with the immunofluores-

cence population survey, indicated a well-defined cell class.

By detecting nNOS, NPY, and GABAAR-a1, it was possible to

recognize this cell type throughout the cerebral cortex.

Many Ivy cells were similar to bistratified cells in the position of

their somata in the pyramidal cell layer and their axonal fields,

distributed in some cases in both strata oriens and radiatum

(Buhl et al., 1994; Klausberger et al., 2004; Pawelzik et al.,

2002). However, our anatomical and physiological analysis shows

two cell types making distinct contributions to hippocampal

networks.

Another neuronal type, the neurogliaform cell, shares some

features with Ivy cells, including dense axonal fields and slow

synaptic transmission (Price et al., 2005; Szabadics et al.,

2007). However, neurogliaform cells have only been reported in

stratum lacunosum-moleculare and their dendritic and axonal

arborizations overlap with the glutamatergic input from the ento-

rhinal cortex (Price et al., 2005). The axonal field of Ivy cells, on

the other hand, is aligned with the CA3 input to stratum oriens

and radiatum. Axonal convergence with distinct glutamatergic

inputs has been used as a key parameter for the definition of

cell types (Somogyi et al., 1998). In addition, the short dendrites

of neurogliaform cells are completely contained within their axo-

nal clouds, whereas the dendrites of Ivy cells extend outside their

(see text for details). Arrow: the repolarizing phase of bistratified cell action po-

tentials occurs much faster than that of Ivy cells.

Vertical scale bars: LFP, 0.5 mV; theta, 0.2 mV; gamma and ripples, 0.1 mV;

units, 0.5 mV; and waveforms, 1 mV. Horizontal scale bars: (A) and (C), 200

ms; (B), 20 ms; (D), 0.5 ms.
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axonal span. Because of their laminar location, the two cell types

receive distinct glutamatergic and GABAergic inputs. Ivy cells

can evoke repetitive inhibitory responses with short delays in py-

ramidal cells, in contrast to neurogliaform cells (Tamas et al.,

2003). Importantly, neurogliaform and Ivy cells fire at different

phases during hippocampal theta oscillations in vivo (P.F.,

Figure 5. Firing Patterns of Interneurons Resembling Ivy Cells in

Behaving Rats

(A) Spike train of an interneuron during theta oscillations in exploration, and rel-

ative to ripple oscillation in slow-wave sleep recorded by tetrodes implanted in

the CA1 stratum pyramidale. Note the low firing rate and phase preferences

during both rhythms, similar to identified Ivy cells.

(B) Firing probability distribution of eight putative interneurons during theta and

ripple oscillations resembling the patterns seen in identified Ivy cells.

(C) Average extracellular action potential waveforms of putative fast-spiking

(n = 86), Ivy (n = 8), and pyramidal (n = 743) cell populations. Fast-spiking cells

were defined by a spike duration of <0.25 ms. Panels show spike width, firing

rate, and the first moment of the autocorrelation for the same fast-spiking (fs),

Ivy, and pyramidal (pyr) cells. Note that putative Ivy cells discharge at low fre-

quencies, similar to pyramidal cells, but unlike the latter Ivy cells do not fire

complex spike bursts as indicated by the first moment of the autocorrelation.

Circles indicate individual putative Ivy cells. Medians and interquartile ranges

are shown for each parameter by horizontal bars and boxes, respectively.

Scale bars: (A) ripples and theta, 0.3 mV; theta, 300 ms; ripples, 500 ms; (C),

0.1 ms.
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T.K., and P.S., unpublished data), which demonstrates that the

two cell classes contribute differentially to temporal computa-

tions, which we consider a key defining criterion to delineate

cell types. Overall, neurogliaform and Ivy cells constitute distinct

cell types, which might support similar contributions to the net-

work, but operate with distinct timing and at functionally distinct

domains defined by separate glutamatergic inputs.

Ivy cells represent the most abundant interneuron type studied

so far, but their identity has been overlooked. Physiologists may

not have recognized them as interneurons because of their wide

spikes, low firing rate, and location among the pyramidal cells;

while anatomists, disregarding molecular expression profiles

and spiking activity, may have mistaken the axons of Ivy cells

for those of bistratified cells. In general, many studies have con-

centrated on the more easily recognizable, widely accepted

interneuron classes, mainly comprising fast-spiking and PV-

expressing cells.

Modulatory Effects of Ivy Cells
The broad spikes of Ivy cells might ensure reliable transmission

of action potentials along the very thin axons, resulting in the

release of GABA and probably NPY and NO; although action-

potential-dependent, axonal release of the neuromodulators

NO and NPY remains to be confirmed. Ivy cell axons made

GABAergic synapses onto oblique and basal dendrites of pyra-

midal cells, evoking IPSPs with slower rise times than those of

fast-spiking bistratified cells. Correlations between spike width

and IPSP kinetics have also been reported for cortical interneu-

rons (Ali et al., 2007). The IPSCs evoked by Ivy cells in CA1

pyramidal cells also appeared to have slower kinetics than those

evoked by CCK-expressing basket cells. The differences in rise

times of synaptic responses could depend on their distances

from the recording site (Rall et al., 1967), but Ivy and bistratified

cells target pyramidal dendritic shafts of similar diameter, and

probably at similar distances from the soma. One explanation

explored was whether there was variability in spike arrival time

at the several synapses contributing to an IPSP, a variability or

jitter that might result from the very fine axons, but single-sweep

analysis provided no evidence for this suggestion. Whether the

slow rise times result from GABAA receptors with slow kinetics,

or from the time course of diffusion of GABA from distributed

sites within the dense axonal cloud (Szabadics et al., 2007),

remains to be determined.

The effect of NO in synaptic transmission has been studied

mainly in relation to dendritic spines of pyramidal neurons, and

its action on soluble guanylate-cyclase-expressing glutamater-

gic terminals (Burette et al., 2002). However, nNOS is also

strongly expressed by Ivy cells, which may be a major source

of NO (Czeh et al., 2005; Jinno and Kosaka, 2002). Although un-

stable, NO diffuses quickly and can maintain physiologically ac-

tive concentrations at a considerable distance from its produc-

tion site (Garthwaite and Boulton, 1995). This suggests that

axons and dendrites of Ivy cells potentially affect nearby presyn-

aptic and postsynaptic targets via NO release. Recently it has

been shown that NO contributes to retrograde signaling in cer-

tain GABAergic synapses in the hippocampus (Makara et al.,

2007; Szabadits et al., 2007); it can induce LTP in GABAergic

synapses on dopaminergic neurons of the ventral tegmental
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Figure 6. Synaptic Transmission and Reconstruction of a Reciprocally Connected Ivy and Pyramidal Cell Pair in the CA1 Region of the

Hippocampus

(A) Reconstruction (from a 450-mm-thick slice) of the Ivy cell (soma/dendrites in orange, axon in yellow) and the pyramidal cell (soma/dendrites in light blue, axon in

white). A large portion of the interneuron’s axonal arbor is located in stratum pyramidale and stratum oriens, with very few collaterals extending into stratum ra-

diatum and alveus.

(B) Responses of the Ivy cell to injected current pulses, demonstrating the frequency adaptation seen in these interneurons.

(C) Action potentials elicited by just suprathreshold current pulses in the pyramidal cell (mauve trace), the Ivy cell (orange trace), and a bistratified cell recorded in

another experiment (gray trace) are superimposed. The Ivy cell action potential is similar in width to that of the pyramidal cell and is considerably broader than the

action potential in the bistratified cell.

(D) Composite averages of the excitatory postsynaptic potentials (EPSPs) elicited by the pyramidal cell in the Ivy cell, demonstrating the strong paired pulse and

brief train depression typical of these inputs.

(E) Composite averages of the inhibitory postsynaptic potentials (IPSPs) elicited by the Ivy cell in the pyramidal cell, demonstrating the typically slow time course

and paired pulse depression of the IPSPs.

(F) Photomicrographs of the Ivy cell at two different magnifications to illustrate a putative synaptic input from the pyramidal cell to the interneuron (red arrows).

Two such putative contacts were identified. The lower bouton and contact site is directly above the dendrite and not visible on this micrograph.

Vertical scale bars: (B), 20 mV; (C), 20 mV; (D) EPSPs, 2 mV; spike, 20 mV; (E) spike, 20 mV; IPSP, 1 mV. Horizontal scale bars: (A), 100 mm; (B), 40 ms; (C), 2 ms; (D),

20 ms; (E), 50 ms; (F) left, 5 mm; right, 2.5 mm.
area (Nugent et al., 2007) and potentiate GABA release in other

systems (Li et al., 2002; Yu and Eldred, 2005). It will be interesting

to investigate how NO released by Ivy cells modulates GABA

release and synaptic activity in the hippocampal network.

Another line of evidence supports the hypothesis that Ivy cells

are specialized in regulating presynaptic sites. The neuropep-

tide Y2 receptor is strongly expressed by Schaffer collateral/

commissural fibers in the CA1 stratum radiatum and oriens
(Stanic et al., 2006), and Ivy cells, with their dense axons in these

layers, represent a major potential local source of NPY. Activa-

tion of Y2 receptors has been shown to mediate a decrease in

glutamatergic transmission by selective inhibition of presynaptic

N-type Ca2+ channels (Colmers et al., 1987). Therefore, Ivy cells

may dynamically modulate glutamate release from the Schaffer

collateral/commissural input. In addition, NPY may decrease

pyramidal cell excitability by increasing GABA release from
Neuron 57, 917–929, March 27, 2008 ª2008 Elsevier Inc. 925
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Table 2. Comparison of the Electrophysiological Characteristics of Ivy and Bistratified Cells and the Properties of Their Synaptic

Connections with Pyramidal Cells Recorded Intracellularly In Vitro

AHP, afterhyperpolarization. *p < 0.05.
interneuron terminals (Bacci et al., 2002), and NPY and NO might

contribute to neurovascular control (Hamel, 2006).

The Role of Ivy Cells in Network Activity
The fast synaptic transmission, high firing rates, and tight phase-

coupling during network oscillations of PV-expressing interneu-

rons endow them with optimal qualities for precisely controlling

the timing of pyramidal cell activity (Csicsvari et al., 1999; Fuchs

et al., 2007; Jonas et al., 2004; Klausberger et al., 2003; Pouille

and Scanziani, 2001). The slower effects of GABA, NPY, and

NO, on the other hand, indicate that Ivy cells might be better

suited for downscaling presynaptic and postsynaptic excitability

and supporting homeostasis in the network.

Ivy cells fired broad action potentials with frequency adapta-

tion upon positive current injection in vitro and discharged at

low frequencies during theta, gamma, and ripple oscillations

in vivo; the in vivo firing patterns of Ivy cells located in stratum

radiatum remains to be investigated. Intrinsic membrane proper-

ties, including long-lasting afterhyperpolarizations, which might

shunt excitatory inputs for relatively long periods (�100 ms),

might explain the slow-spiking character of Ivy cells. Due to

the strongly depressing nature of their EPSPs, the relatively

sparse spikes fired by Ivy cells during theta oscillations might

be initiated by the concerted firing of a few presynaptic pyrami-

dal cells that were previously silent. However, the lack of activa-

tion of Ivy cells during ripple oscillations indicates that these cells

might be under strong inhibitory control, the source of which re-

mains to be identified. The lack of firing in Ivy cells during most

oscillatory cycles indicates that the maintenance of the rhythm

and its exact timing is provided by fast-spiking and/or PV-

expressing interneurons, which fire on most cycles (Csicsvari
926 Neuron 57, 917–929, March 27, 2008 ª2008 Elsevier Inc.
et al., 1999; Klausberger et al., 2003). The spiking activity of Ivy

cells during some oscillatory cycles may inhibit a population of

targeted pyramidal cell dendrites. The exact contribution of the

highly abundant Ivy cells to hippocampal network function and

their presynaptic or postsynaptic modulation of neuronal activity

might be explored by future selective manipulation of the activity

of this cell type.

EXPERIMENTAL PROCEDURES

All procedures involving experimental animals were carried out in accor-

dance with the Animals (Scientific Procedures) Act, 1986 (UK) and associated

procedures.

In Vivo Recording and Labeling

The four Ivy cells were obtained from four male Sprague-Dawley rats (250–350

g) anesthetized with urethane (1.25 g/kg of body weight) plus supplemental

doses of ketamine and xylazine (20 and 2 mg/kg, respectively) as needed;

body temperature was maintained with a heating pad. Neuronal activity in the

hippocampus was recorded extracellularly with a glass electrode (15–25 MU)

filled with 1.5% neurobiotin in 0.5 M NaCl, and the local field potential (LFP)

was recorded with a nearby second electrode in CA1 stratum pyramidale.

Single-unit activity (sampling rate, 20 kHz) and LFP (sampling rate, 1 kHz)

were filtered online between 0.8–5 kHz and 0.3–300 Hz, respectively. Re-

corded cells were individually labeled with neurobiotin using the juxtacellular

labeling method, only after data for the firing patterns had been sampled

from the unaffected cell. Spike shape and amplitude were monitored during re-

cording and labeling to ensure that the same cell was recorded and labeled.

Two to four hours (P2a, 3 hr; T98e, 2 hr; T134a, 3.5 hr; T140b, 3 hr) after label-

ing, cardiac perfusion with saline was followed by �20 min fixation with a

fixative 4% paraformaldehyde, 15% v/v saturated picric acid, and 0.05%

glutaraldehyde.

Recordings in nonanesthetized animals were performed in ten male rats

(four Long Evans, two Hooded Lister, four Sprague-Dawley) with 4–16
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independently movable wire tetrodes as described previously (Klausberger

et al., 2005).

In Vitro Recording and Labeling

For sharp electrode recordings, male Wistar rats weighing between 140–200 g

were anaesthetized in a halothane (ICI Pharmaceutics, UK) -saturated cham-

ber, then given an intraperitoneal injection of sodium pentobarbitone (Euthatal,

Vericore Ltd, Dundee, 60 mg/kg) and perfused transcardially with ice-cold

modified artificial cerebrospinal fluid (ACSF) with added sodium pentobarbi-

tone (60 mg/l), in which the NaCl was replaced with 248 mM sucrose. The

rats were decapitated, the brain was removed, and 450-mm-thick coronal sli-

ces were cut (Vibroslice, Camden Instruments) and transferred to an interface

recording chamber maintained at 34�C–35�C. The slices were maintained for

1 hr in sucrose containing ACSF; this was then replaced with standard ACSF in

which all recordings were made, and which contained 124 mM NaCl, 25.5 mM

NaHCO3, 3.3 mM KCl, 1.2 mM KH2PO4, 1.0 mM MgSO4, 2.5 mM CaCl2, and

15 mM D-glucose, equilibrated with 95% O2/5% CO2 gas. Paired intracellular

recordings were made using conventional sharp microelectrodes (resistances

of 150–200 MU) containing 2 M potassium methylsulphate and 2% biocytin (w/

v) under current-clamp conditions using an Axoprobe amplifier (Axon Instru-

ments, Burlingame, CA). The cells were passively filled with biocytin while re-

cording. After synaptically connected neurons were recorded, the slices were

fixed, resectioned at 50 mm thickness, and histologically analyzed for identifi-

cation of recorded neurons as described previously (Pawelzik et al., 1999).

For whole-cell recordings (33�C ± 1�C), male postnatal day 17–20 Sprague-

Dawley rats were anaesthetized with isoflurane and decapitated, and acute sli-

ces of hippocampus were prepared as previously described (Price et al.,

2005). Single and paired whole-cell recordings were performed using an

EPC10/2 amplifier (HEKA, Lambrecht, Germany). The somata of the interneu-

rons in the stratum radiatum of the CA1 area were visually identified based on

their shape and size. Borosilicate patch electrodes were filled with 126 mM

K-gluconate, 10 mM HEPES, 10 mM Na2Phosphocreatine, 4 mM KCl, 4 mM

Mg-ATP, 0.3 mM Na2-GTP, and 0.15% biocytin (pH 7.3) with KOH, and had

resistances between 4 and 6 MU. Access resistance was always monitored

to ensure the stability of recording conditions. In the paired recording experi-

ments, putative presynaptic interneurons were voltage clamped at a holding

potential of �60 mV, and the postsynaptic CA1 pyramidal neurons were

held at �50 mV to enhance the driving force for the Cl�-mediated GABAergic

responses. Action currents were elicited in one cell and the corresponding

uIPSC was measured in the postsynaptic neuron. Histological analysis was

performed as described previously (Price et al., 2005).

Tissue Processing and Anatomical Analysis

of In Vivo Recorded Cells

Immunofluorescence and peroxidase reactions for light and electron micros-

copy and reconstruction of cells were performed with all necessary controls,

as described previously (Klausberger et al., 2005). Neurons were recon-

structed using a drawing tube; soma size and axonal length (by ‘‘skeletonizing’’

the axonal processes) were measured with ImageJ (NIH, Bethesda, MD). For

immunofluorescence reactions, mixtures of up to four primary antibodies

raised in different species were used; they are listed in Table S4. Secondary

antibodies were conjugated to Alexa Fluor 488 (Invitrogen�, Molecular

Probes�, Eugene, OR), AMCA� (Jackson ImmunoResearch Laboratories,

Inc., West Grove, PA), Cy�3 (idem), or Cy�5 (idem).

Electron microscopic analysis and target identification was performed as

described previously (Klausberger et al., 2005). The 3D reconstruction from se-

rial electron micrographs was performed using Reconstruct v1.0.3.0 (http://

synapse-web.org/tools/index.stm, John C. Fiala) and Lightwave 3D� 8.5

(NewTek, Inc., San Antonio, TX).

The frequencies of coexpression of PV, NPY (rabbit antibody), and nNOS

(mouse antibody) in interneurons were estimated in accordance with the opti-

cal disector principle. To cover the whole area of the CA1 region, three non-

overlapping scanning fields (field size: 750 3 750 mm) were delineated in

each section. Stacks of 30–40 serial optical sections nominally 2 mm apart (ref-

erenced to the original 70 mm thickness of the Vibratome section to compen-

sate for Z direction shrinkage) were recorded with a confocal laser-scanning

microscope (CLSM; TCS-SP2; Leica Microsystems, Wetzlar, Germany) under
a 203 objective lens (NA 0.75) for each field. Prior to the disector counting, we

checked the penetration of each immunolabeling and found that antibodies to

PV did not fully penetrate into the middle of 70-mm-thick sections, although

those to NPY and nNOS penetrated completely. Because the height of unbi-

ased counting space should be adjusted to the thickness of sections showing

adequate immunostaining (Jinno and Kosaka, 2002), here we used the CLSM

optical section at the physical cut surface as a look-up section, and those be-

tween 2 to 18 mm (referenced to the original 70 mm thickness of the Vibratome

section) inside the surface as reference sections. The measuring and counting

procedures were carried out by using an image-analysis software package,

ImageJ 1.35 (NIMH, Bethesda, MD), with the Cell Counter plug-in (Kurt De

Vos, University of Sheffield, Sheffield, UK).

The expression of GABAAR-a1, CR, CB, SM, or a-actinin-2 in putative Ivy

cells was assessed by epifluorescence microscopy in triple or quadruple im-

munoreactions by photographing (under a 403 objective lens, NA 0.7)

nNOS-expressing cells in stratum pyramidale on both surfaces of the section

in random, nonoverlapping fields.

Data Analysis for Recordings from Anaesthetized Rats

The detection of theta, non-theta/non-sharp wave and ripple episodes, the

beginning, highest amplitude, and end of ripple episodes, and the calculation

of discharge frequencies of single cells during different brain states, were

achieved as described previously (Klausberger et al., 2003). Gamma oscilla-

tions were detected by digitally filtering (30–80 Hz) the LFP and selecting cy-

cles with amplitude greater than the mean cycle amplitude computed over

the entire duration of the recording; units and LFP were recorded from sepa-

rate electrodes. To determine the firing phase histograms, the troughs of the

oscillations were detected in the filtered LFP. Each spike was assigned to

a given phase (bin size 18�) between the troughs (0� and 360�).

Seven bistratified cells (T79e, T83a, T89a, T92a, T96a, T104a, and T104b)

published earlier (Baude et al., 2006; Klausberger et al., 2004) and two addi-

tional unpublished bistratified cells (C8b and P31a) were analyzed for compar-

ison with Ivy cells.

Data Analysis for Recordings In Vivo in Drug-Free Rats

Unit isolation and clustering procedures have been described previously

(Csicsvari et al., 1999). Data from some of these cells not related to the present

study have been reported earlier (Klausberger et al., 2005; O’Neill et al., 2006),

but here, new analysis was carried out. Putative fast-spiking cells (n = 86) were

defined as units with spike durations shorter than 0.25 ms and first moment of

their autocorrelogram being longer than 11 ms; pyramidal cells (n = 743) were

defined as units with spike durations longer than 0.25 ms, the first moment of

their autocorrelogram being shorter than 11 ms. Spike width was measured

from the electrode with the highest spike amplitude after averaging action po-

tentials, and was defined as the width of the waveform at 25% of the spike am-

plitude maximum relative to baseline.

Data Analysis for Recordings In Vitro

For sharp electrode recordings, data were digitized using an analog to digital

converter (CED 1401, Cambridge, UK) at 10 kHz and filtered at 5 kHz (voltage

resolution 0.005–0.01 mV) (Spike-2, Cambridge Electronic Designs, Cam-

bridge, UK). Data were analyzed off-line using in-house software (developed

by Dr. David West, School of Pharmacy, London, UK). Single sweeps were

checked to ensure that every presynaptic action potential was recognized

by the software and that the trigger points used for subsequent analysis

were accurately aligned with the fast component of the rising phase of each

action potential. Sweeps that included large artifacts that obscured the post-

synaptic event were excluded. The amplitudes of EPSPs and IPSPs, 10%–

90% rise times, and widths at half amplitudes were measured from averages

of the first EPSPs or IPSPs (R80 sweeps). Averages of second and third

EPSPs and IPSPs were triggered from the rising phase of the second and third

action potentials, respectively. Two of the cells included here as Ivy cells

(970514HHP and 969711AHP) have been reported previously as bistratified

cells (Ali et al., 1998; Pawelzik et al., 1999). In the light of our new data we re-

classify them as Ivy cells. The physiological parameters of four bistratified cells

(980513B, 970211A1, 960805A, and 960604B) used for comparison in this

study have been reported previously (Ali et al., 1998; Pawelzik et al., 1999)
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and are included to provide a more comprehensive average; another eight

bistratified cells are reported here for the first time.

For whole-cell recordings, data were analyzed off-line using Igor Pro 5.05

(Wavemetrics, Lake Oswego, OR). Failures were flagged if the uIPSCs were

of smaller amplitude than three times the standard deviation (SD) of the base-

line recording, had a time window smaller than 10 ms, or had an onset time that

was greater than the average plus five times the SD calculated from files of 50

sweeps. The input resistance (Rin) was calculated from the slope of a line fitted

to the subthreshold range on a plot of the injected current versus the steady-

state membrane voltage when a family of hyperpolarizing and depolarzing cur-

rent injections was applied. The decay time constant was calculated by fitting

a single exponential to the response of the cell to a current injection of �30/

�60 pA in current-clamp mode. The action potential half-width and afterhyper-

polarization were measured from the initial point of the raising phase of the ac-

tion potential. The peak amplitude, 10%–90% rise time, half-width, and decay

time of the uIPSCs was analyzed from averages of 20–30 single uIPSCs.

Statistics

Unless stated, all tabulated data are presented as the mean ± SD, and exact

Mann Whitney U-test was used for statistical comparisons between popula-

tions. Theta and gamma phases were analyzed using circular statistics. Signif-

icant differences were accepted at p < 0.05.

SUPPLEMENTAL DATA

The Supplemental Data for this article can be found online at http://www.

neuron.org/cgi/content/full/57/6/917/DC1/.
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