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Do thin spines learn to be mushroom spines that remember?
Jennifer Bourne and Kristen M Harris
Dendritic spines are the primary site of excitatory input on most

principal neurons. Long-lasting changes in synaptic activity are

accompanied by alterations in spine shape, size and number.

The responsiveness of thin spines to increases and decreases

in synaptic activity has led to the suggestion that they are

‘learning spines’, whereas the stability of mushroom spines

suggests that they are ‘memory spines’. Synaptic

enhancement leads to an enlargement of thin spines into

mushroom spines and the mobilization of subcellular resources

to potentiated synapses. Thin spines also concentrate

biochemical signals such as Ca2+, providing the synaptic

specificity required for learning. Determining the mechanisms

that regulate spine morphology is essential for understanding

the cellular changes that underlie learning and memory.
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Introduction
The majority of excitatory synapses in the brain occur on

dendritic spines. Mature spines have a bulbous head that

forms part of an excitatory synapse and is connected to the

dendrite by a constricted neck. Neighboring spines vary

dramatically in size and shape (Figure 1). In adult hippo-

campus and neocortex, spine shapes differ categorically

with>65% of spines being ‘thin’ and�25% being ‘mush-

room’, having head diameters >0.6 mm [1,2]. Under

normal circumstances, �10% of spines in the mature

brain have immature shapes: stubby, multisynaptic, filo-

podial or branched [1–4]. These shapes can be recognized

using light microscopy if the spine is properly oriented,

but accurate identification and measurement of spine

synapses, dimensions and composition requires recon-

struction from serial section transmission electron micro-

scopy (ssTEM). Here we evaluate evidence from the

past few years that addresses the question of whether

thin and mushroom spines represent distinct categories,
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or whether they instead switch shapes depending on

synaptic plasticity during learning.

Maturation and stabilization of spines
Spines tend to stabilize with maturation [5�]; however, a

small proportion continues to turnover in more mature

brains [5�–7�]. The transient spines are thin spines that

emerge and disappear over a few days, whereas mush-

room spines can persist for months [5�,6�]. Mushroom

spines have larger postsynaptic densities (PSDs) [1],

which anchor more AMPA glutamate receptors and make

these synapses functionally stronger [8–12]. Mushroom

spines are more likely than thin spines to contain smooth

endoplasmic reticulum, which can regulate Ca2+ locally

[13], and spines that have larger synapses are also more

likely to contain polyribosomes for local protein synthesis

[14]. Furthermore, large but not small spines have peri-

synaptic astroglial processes, which can provide synaptic

stabilization and regulate levels of glutamate and other

substances [15�,16]. These features suggest that mush-

room spines are more stable ‘memory spines’ [17]. By

contrast, thin spines form or disappear relatively rapidly in

response to different levels of synaptic activity [18,19].

Thin spines have smaller PSDs that contain NMDA

receptors but few AMPA receptors, making them ready

for strengthening by addition of AMPA receptors [8–12].

Thin spines maintain structural flexibility to enlarge and

stabilize, or shrink and dismantle, as they accommodate

new, enhanced, or recently weakened inputs, making

them candidate ‘learning spines’ [5�,6�,17].

During the first postnatal week in rats, dendritic filopodia

emerge and interact with axons to form nascent synapses.

Most of these developmental filopodia contract resulting in

shaft synapses or stubby spines. During the second post-

natal week, thin and mushroom spines begin to emerge [3].

In more mature brains, filopodia-like protrusions can also

emerge and ssTEM shows that they lack synapses

[6�,20��,21]; by contrast, spines with bulbous heads that

persist four or more days have synapses [20��]. Blocking

synaptic transmission in mature, but not immature, hippo-

campal slices results in a homeostatic spinogenesis that

significantly increases numbers of nonsynaptic filopodia,

shaft synapses, multisynaptic protrusions and stubby

spines, suggesting a recapitulation of early development

[21,22]. If the head of the filopodium swells to accommo-

date a PSD and other subcellular organelles, then it

becomes a dendritic spine. The adult neuropil is more

compact and might prevent contraction of nonsynaptic

filopodia back to the dendritic shaft. In addition, mature

dendrites might possess more local resources (e.g. proteins,

mRNA and organelles) that can be transported into a
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Figure 1

Dendritic spines occur in a variety of shapes and sizes. (a) An electron

micrograph from area CA1 of the mature rat hippocampus shows three

cross-sectioned dendrites with longitudinally sectioned dendritic spines.

(b) A colorized version of the micrograph in (a), highlighting the dendrite

shaft (yellow), spine necks (blue), spine heads (green) and presynaptic

boutons (orange). Scale bar, 0.5 mm. (c) Three-dimensional

reconstruction of an 8.5 mm long dendrite (yellow) reveals how spines

and PSDs (red) vary greatly in size and morphology even along short

segments of dendrite. Scale cube, 0.5 mm3.
filopodium to support local maturation of the synapse, and

this could explain why some filopodia convert directly into

spines with bulbous heads in more mature brains.

Distance-dependent or input-dependent
regulation of spine shape
Differences in synapse dimensions might also compen-

sate for distance-dependent differences in dendritic func-
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tion [23]. Recent studies show that nearly all of the most

distal synapses on the apical dendritic tufts of hippo-

campal CA1 pyramidal cells have large perforated

synapses [24]. Perforations in synapses have been seen

only on large mushroom spines and they seem to be

transient results of intense presynaptic activation [4].

Nevertheless, the perforations categorically identify large

mushroom spines. The composition of perforated

synapses seems to be input specific. For example, perfo-

rated synapses located in striatum radiatum that receive

axonal input primarily from area CA3 have a higher

density of AMPA receptors than perforated synapses

located in the distal apical tuft that receive axonal input

primarily from the entorhinal cortex [24]. Thin and mush-

room spines also seem to distinguish between different

inputs in the amygdala: in the lateral nucleus, large

‘mushroom’ spines receive input primarily from thalamic

afferents and have larger Ca2+ transients than do cortical

afferents that synapse on neighboring thin spines [25��].
Whether these are strictly input-specific differences in

spine shape or reflect different levels of activation

remains to be determined.

Spine necks regulate biochemical and
electrical signals in large and small spines
Compartmentalization of Ca2+ within the spine head is

controlled by spine neck dimensions in both mushroom

and thin spines of CA1 pyramidal cells [26�]: spines that

have narrower or longer necks appear to retain more Ca2+

in their heads following synaptic activation than do wider

shorter spines. Depending on the absolute concentration

achieved, the localized increase in Ca2+ levels could

modulate signaling cascades that strengthen or weaken

spine synapses. The bidirectional diffusion of proteins

also seems to be mediated by an activity-dependent

barrier in the spine neck [27]. Longer thinner spine necks

transiently trap more molecules such as inositol 1,4,5-

triphosphate [28] and PSD95 [29], which further regulate

Ca2+ or synaptic efficacy. The length of time that PSD95

remains within a spine before diffusing into the dendrite

is developmentally regulated and experience dependent

[29], as is the aforementioned formation of spine necks.

The number of isolated spines increases with neuronal

activity, suggesting a synapse-specific mechanism to

amplify the biochemical signals necessary for synapse

growth or removal [27].

The impact of spine neck geometry on electrical signals

seems to differ across brain regions. Early ssTEM and

modeling studies suggested that most hippocampal, stria-

tal and Purkinje cell spine necks are not constricted

enough to attenuate charge transfer to the parent den-

drites significantly [1,30,31], and imaging and electro-

physiology studies have confirmed these original

models for these spines [32]. By contrast, recent studies

suggest that thin spines on basilar dendrites of neocortical

layer 5 pyramidal cells are long and constricted enough to
www.sciencedirect.com
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reduce charge transfer [33,34�]. Long-necked spines are

essentially electrically silent at the soma, although Ca2+

indicators demonstrated that they are activated by unca-

ging of glutamate at their synapses. It will be interesting

to know whether the absolute dimensions of these spine

necks are in the special range where slight changes

modulate charge transfer [35] and whether these basilar

dendrites lack active properties that could boost charge

transfer to the soma (in contrast to apical dendrites of

hippocampal CA1 cells, where dendritic spikes can

amplify synaptic events [23]). ssTEM analysis of the

cortical spines would also reveal how the cytoarchitecture

and presence or absence of organelles could impact the

transfer of charge and the flow of biochemical signals.

Long-term potentiation converts ‘learning
spines’ into ‘memory spines’
Long-term potentiation (LTP) is an enduring enhance-

ment of synaptic transmission that is thought to be the

cellular correlate of learning and memory. In the imma-

ture hippocampus, one effect of LTP is to increase spine

head size [36,37,38�,39��], which is followed by an

accumulation of AMPA receptors at the synapse

(Figure 2) [38�]. Both large and small spines undergo

the same absolute increase in head volume and surface

area [37,38�]. Recent work reveals a mobilization of

recycling endosomes and vesicles (RCs) and amorphous
Figure 2

Model of LTP-related enlargement of dendritic spines and synapses. (a) Am

RC) are recruited to potentiated dendritic spines. (b) AVCs insert new mem

(blue lines) are inserted and then receptors migrate to the vicinity of the syn

inserted membrane is less crowded with other proteins. (c) Polyribosomes (b

spines, where proteins are synthesized locally to stabilize the AMPA recept

presynaptic axon enlarges, vesicles are recruited and a dense core vesicle

enlarged PSD. Astroglial processes (AS) are attracted to the perimeter of th

synaptic cleft (orange arrow).
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vesicular clumps (AVCs) into spines within minutes after

the induction of LTP [39��]. AVCs provide a source of

plasma membrane for spine enlargement and RCs prob-

ably transport AMPA receptors. By two hours after the

induction of LTP, polyribosomes redistribute into the

heads of dendritic spines that have enlarged synapses

[14]. A transient decrease in levels of F-actin occurs

immediately after the induction of LTP and this might

enable the transport of polyribosomes and other

plasticity-related proteins into the potentiated spines

[40]; however, sustained spine enlargement is accom-

panied by an increase in F-actin levels [41�]. New spines

are also formed in response to stimulation paradigms that

can induce LTP, and with time their spine heads also

enlarge [42,43].

Structural synaptic plasticity also occurs in the more

mature hippocampus after the induction of LTP. Poly-

ribosomes are significantly upregulated in dendritic

spines two hours after the induction of LTP, and spines

that have polyribosomes also have enlarged synapses [44].

The proportion of perforated and complex PSDs is

increased one hour after induction of LTP [45]. The

volume and area of thin and mushroom spines are

increased relative to control stimulation six hours after

the induction of LTP in the dentate gyrus in vivo [46].

ssTEM has shown that the size of the PSD is perfectly
orphous vesicular clumps (green, AVC) and recycling vesicles (red,

brane as the spine head enlarges. RCs that contain AMPA receptors

apse; this migration might be facilitated by the fact that the newly

lack dots, PR) are unmasked and/or recruited to the heads of potentiated

ors and enlarge the postsynaptic density (PSD). At some point the

(DCV) fuses to enlarge the presynaptic active zone to match the

e enlarged synapses, possibly by the spill-out of glutamate from the
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correlated with the size of the presynaptic bouton and the

number of vesicles it contains [1]; hence, at some point

there must be an enlargement of the presynaptic active

zone and increase in the number of presynaptic vesicles

(Figure 2). Dense core vesicles recently found in mature

presynaptic axons seem to be the transport vesicles in

active zones [47] that enable rapid formation or enlarge-

ment of the active zone in parallel with PSD enlargement

(Figure 2) [48]. Blocking synaptic transmission in the

more mature hippocampus results in homeostatic upre-

gulation in spines and synapses that recapitulates devel-

opmental synaptogenesis [21]; for example, ssTEM

reveals a decrease in spine number two hours after

induction of LTP relative to control stimulation in rela-

tively mature slices that had been prepared under ice-

cold conditions [44]. However, it is possible that this

decrease reflects the strengthening of some newly formed

synapses by LTP and the elimination of others owing to

the ice-cold slicing conditions, so that the control site

retained a larger number of the synapses. Recent findings

show that chopping slices under mildly hypothermic

conditions (room temperature) and transferring them

rapidly (in <7 min) to a life-support chamber results in

the same density of spines and synapses as in perfusion-

fixed hippocampus [49]. These conditions might be more

conducive to revealing LTP-related synaptogenesis in

more mature hippocampal slices.

Long-term depression converts ‘memory
spines’ into ‘learning spines’
Long-term depression (LTD) also has an integral role in

the processing and retention of information but, in con-

trast to LTP, LTD is a long-lasting reduction in synaptic

transmission that results from low-frequency stimulation.

Induction of LTD results in shrinkage [50] or retraction

of dendritic spines [51] associated with a depolymeriza-

tion of actin [52]. Perhaps the conversion of large ‘mem-

ory spines’ back into smaller ‘learning spines’ resets the

plasticity potential of the dendrite.

Conclusions
Age-related and disease-related declines in cognitive

ability are accompanied by decreases in spine density

[53,54��–56��,57]. Treatments aimed to counteract age-

related cognitive decline result in an increase in numbers

of thin spines specifically [56��], suggesting that thin

spines are necessary to restore the potential for synaptic

plasticity and learning in the aged brain. In addition, the

structural stability and abundance of subcellular resources

supports the hypothesis that mushroom spines are the

more stable ‘memory spines’. LTP results in a morpho-

logical shift from thin to mushroom spines whereas LTD

results in spine shrinkage and retraction. Developmental

disorders such as Fragile X syndrome that are accom-

panied by varying degrees of mental retardation have

been characterized by thinner more elongated spines that

do not mature into large, mushroom spines [57,58]; these
Current Opinion in Neurobiology 2007, 17:1–6
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spines also display enhancement of LTD mediated by

metabotropic glutamate receptors [59]. Although light-

level imaging techniques reveal gross morphological

changes, ssTEM is needed to detect and measure

changes in dimensions and to provide information about

the subcellular events that mediate morphological

changes [39��]. Several questions remain. Which struc-

tural changes are specific to the different phases of LTP

and LTD and other forms of synaptic plasticity? How

long does each structural change last? Is the structural

synaptic plasticity that is found in the mature brain a

recapitulation of development, or fundamentally differ-

ent? Which structural changes are specific to particular

classes of synapse? Answers to these and related questions

are needed to understand how distorted spine and synap-

tic structure affect brain function.
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