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ABSTRACT A natural way to measure protein
surface curvature is to generate the least squares
fitted (LSF) sphere to a surface patch and use the
radius as the curvature measure. While the concept
is simple, the sphere-fitting problem is not trivial
and known means of protein surface curvature
measurement use alternative schemes that are argu-
ably less straightforward to interpret. We have devel-
oped an approach to solve the LSF sphere problem
by turning the sphere-fitting problem into a solvable
plane-fitting problem using a transformation known
as geometric inversion. The approach works on any
arbitrary surface patch, and returns a radius of
curvature that has direct physical interpretation.
Additionally, it is flexible in its ability to find the
curvature of an arbitrary surface patch, and the
“resolution” can be adjusted to highlight atomic
features or larger features such as peptide binding
sites. We include examples of applying the method
to visualization of peptide recognition pockets and
protein conformational change, as well as a compari-
son with a commonly used solid-angle curvature
method showing that the LSF method produces
more pronounced curvature results. Proteins 2005;
61:1068–1074. © 2005 Wiley-Liss, Inc.
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INTRODUCTION

Protein surface shape and curvature are key aspects
of protein function and recognition. Peptide interactions
to macromolecules often occur at structural clefts in
proteins1 and RNA,2 and available algorithms for find-
ing binding sites essentially locate concave pockets.3–5

Protein surface curvature may influence the hydropho-
bic effect that is important in understanding protein
folding,6 – 8 and large-scale comparisons of protein sur-
face topologies can help in protein function annotation
by detecting functional similarities based on surface
similarity of active sites.9

The major methods for quantitatively measuring pro-
tein surface curvature can be classified by their use of
solid-angle or differential geometry approaches. Both types
of methods use the concepts of molecular surface (MS) and
solvent-accessible surface first defined by Richards,10 and
depicted in Figure 1(A). The solvent-accessible surface is
defined by the center of a spherical water probe that is

exhaustively rolled over the protein surface, while the MS
is defined by the protein surface that the water probe
touches, with inclusion of the reentrant surface depicted
by the top water probe in Figure 1(A). While neither the
solvent-accessible surface nor the MS is a truly smooth
surface, the MS is smoother and is typically used in
calculating curvature.

Solid-angle approaches such as the classic method of
Connolly calculate curvature by placing a sphere with its
center on the molecular surface and measuring the solid
angle,11 which can be defined by the surface area of the
sphere portion lying inside the protein divided by the
sphere’s total surface area [illustrated in Fig. 1(B)].
GRASP12 and SURFCV13 use similar approaches. Solid-
angle methods are fast but, as illustrated in Figure 1(B),
ignore the topology of the surface inside the sphere since
only the points where the placed sphere and protein
surface intersect are accounted for in the calculations.

The other major approach to curvature calculation
involves methods from differential geometry that nor-
mally require a mathematically-defined and continuous
surface, from which essentially the greatest and small-
est curvatures, known as the principal curvatures, of the
surface can be calculated analytically. The principal
curvatures are averaged to yield an average curvature,
or multiplied to yield a Gaussian curvature.14 These
methods assume a continuous and differentiable sur-
face, which is not found for protein molecular surfaces
because of torus cusps and creases resulting from the
intersection of molecular surface elements. Duncan and
Olson used a Gaussian representation of protein atoms
in part to try to overcome this issue.14 SURFRACE
circumvents this issue by taking an average of the
curvatures of each continuous section (e.g., torus or
sphere) of the non-differentiable surface,15 as illus-
trated in Figure 1(C). Zachmann et al. elegantly com-
pute principal curvatures from a numerically fitted
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paraboloid.16 Differential geometry approaches are gen-
erally considered to be more accurate than solid-angle
methods because they attempt to take into account the
surface patch topology, although the most appropriate
curvature may differ depending on the application.

Perhaps the most obvious and straightforward ap-
proach for measuring surface curvature is to find the
least squares-fitted (LSF) sphere to the surface, or, more
precisely, the sphere that best fits a given surface as
defined by a least sum of squared distances, as illus-
trated in Figure 1(D). Such an approach has the advan-
tages of differential geometry methods, while addition-
ally providing a quantitative curvature measure that is
straightforward to apply and has direct physical inter-
pretation. A sphere can be fitted to any surface, avoiding
issues caused by differential geometry requirements for
a smooth, differentiable surface. And the curvature can
be taken from the radius of the LSF-sphere, instead of
averaging curvatures over multiple sections of the non-
differentiable surface or deriving a radius of curvature
from a fitted parabaloid. Because the sphere is fitted to
the whole surface, such a curvature measure takes into
account the nuances of the surface topology, unlike
solid-angle methods. The advantage of fitting to the
whole surface in comparison to the solid angle approach
is illustrated in Figure 1. The two surfaces result in the
same solid-angle curvature in Figure 1(B) despite hav-
ing topologies that suggest different curvatures, while
the LSF sphere approach shown in Figure 1(D) allows
differentiation of the two surfaces.

The LSF sphere approach is the most direct approach,
but is not known to have been implemented for protein
curvature calculation, most likely because fitting a sphere
to an arbitrary surface turns out to be a difficult problem.
While fitting of planes to a set of points can be easily done

by finding the smallest eigenvalue and associated eigenvec-
tor of a symmetric, positive, semi-definite matrix,17 there
is no known simple matrix construction for sphere fitting
that allows direct evaluation, despite extensive research.
Known methods for least squares sphere fitting involve an
initial guess followed by iterative searching or sampling
methods.18–22 Such methods suffer from potentially long
or unlimited run times and convergence to suboptimal
solutions, analogous to finding local minima instead of a
global one. Here, we present a method to determine an
intuitive curvature measure by transforming the sphere-
fitting problem into a plane-fitting problem using a geomet-
ric transformation known as inversion. We apply the
method for enhancing visualization of proteins and protein
conformational changes. While proteins are the focus of
this report, this method is general for any type of macromol-
ecule.

MATERIALS AND METHODS
Surface Representation

Analytic representation of the macromolecular surface
involves first constructing the three-dimensional weighted
Delaunay tessellation of the biomolecule and then subtract-
ing the alpha shape complex,23 as implemented by Koehl
in POCKET24 and first described by Liang and cowork-
ers.25 We have validated the surface areas calculated by
our surface representation with results from NACCESS5

and POCKET. Curves representing boundaries between
atoms are then calculated to allow reconstruction of the
surface. The solvent-accessible surface is a union of sphere
sections, while the molecular surface additionally includes
torus and sphere sections that map the reentrant surface
[Fig. 1(A)]. Each surface piece is evenly painted by points
using a spiral dot placement algorithm26,27 followed by
removal of points outside the boundary curves. In this
work, we pick points within a local radius to define the
patch for curvature measurement, and we restrict the
patch to a continuous surface such that patches are not
included if they are within the distance range but are not
connected.

Other approaches are available for generation of surface
points, including the Connolly approach28 and one based
on icosahedrons.13 The approach we chose gives us flexibil-
ity in varying the density of surface points, interconverting
between a discretized surface and an analytic surface, and
varying the size of patches.

Least Squares Curvature Algorithm

Finding the best-fitted sphere requires simultaneous
minimization of distances and definition of a center given
the restriction to a sphere. A transformation known as
geometric inversion29,30 is used in generating an LSF
sphere to a surface. An inversion sphere of radius k can be
defined for any inversion point (p,q,r), and all other points
(xi,yi,zi) can be transformed around the inversion sphere as
follows:

Fig. 1. Comparative illustration of methods discussed. A: Definition of
solvent accessible surface, molecular surface, and van der Waals
surface. The two light gray circles represent water probe spheres, and the
dark gray area represents the area occupied by protein atoms. B:
Illustration of the solid-angle curvature calculation method, which involves
placing a sphere on a surface point and using the portion of the sphere
lying inside the surface, represented by a dashed line, to generate a value
that represents curvature. C: Illustration of the SURFRACE method,
which takes an average of the curvatures of each continuous section of
the non-differentiable surface. D: Illustration of the LSF sphere method,
which involves fitting a sphere to the surface.
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The transformation takes the inversion point (p, q, r)
to infinity. In practice, this point is treated as a special
case. We use a unit inversion sphere (k � 1) here.
However, other definitions of k, and even potentially
setting a larger k for larger surfaces, may increase the
accuracy of the method. We make use of the geometric
inversion property of being self-dual, meaning that a
point transformed twice returns to the same point.
Another property we take advantage of is that inversion
of points that lie on a sphere that passes through the
inversion point results in a set of points that lies on a
plane [depicted for the two-dimensional case in Fig.
2(A)]. It follows that a set of points that lie approxi-
mately on a sphere, where the LSF sphere passes
through the inversion point, will lie near a plane under
inversion. We note that geometric inversion was also
used by Yeates for a different problem in protein model-
ing, that of finding spheres that simultaneously touch
four atoms in a protein and do not intersect the sur-
face.31 We use inversion to find a LSF sphere, where the
fit is determined by the sum of the smallest distances
from the ideal sphere to each data point. The best-fit line
to points in two dimensions, or the best-fit plane to
points in three dimensions, can be determined by finding
the smallest eigenvalue and corresponding eigenvector
of a symmetric, positive, semi-definite matrix,18,19 which
can be done in constant time. Due to the inversive
transformation, the closest point to the origin on the
plane found represents the furthest point from the
origin when inverted back to normal space. The origin
and this furthest point defines the diameter of the
sphere since they both lie on the sphere [see left panel of
Fig. 2(A)]. Because the inverted space shifts the spatial
relationships between points, we use a weight of di

4 for
the plane LSF, where di is the distance for each point, i,
from the inversion point.

The algorithm is depicted in Figure 2(B). Making the
reasonable assumption that the LSF sphere passes
through at least one of the data points, the set of surface
points is then fitted around each surface point to gener-
ate a set of possible solutions, and the fitted sphere with
the least sum of squares is kept as the best fitted sphere
solution. The sphere radius is mathematically referred
to as the “radius of curvature.” The complete algorithm
that includes the transformation, plane fitting, and
inversion about each point, is detailed below and results
in an overall complexity of O(n2).

Algorithmic complexity for each step is given on the
right.

1. Define a set of points P to find the least sum of squares
sphere to.

2. For each point pi�P:
a. Let pi be the inversion point (p, q, r) and points

{xi, yi, zi} be all other points in P.
O(1)

b. Invert {xi, yi, zi} using the inversion defined in the
methods to generate points ti.

O(n)

c. Find the least sum of squares plane fit to the points ti. O(1)
d. Find the point on the plane closest to pi. Call this

point a.
O(1)

e. Transform a using the inversion defined in the
methods to generate a�.

O(1)

f. Define the sphere center, ci, as the average of pi
and a�.

O(1)

g. Define the radius for the sphere given center ci. O(1)
h. If the least sum of squares is lower than the previous

best fit, keep ci and the radius.
O(1)

3. Output the best found center and radius.

To determine whether the surface is convex or concave, we
calculate the distance between the center of the LSF
sphere and the relevant atom center, and assign the
surface as concave if the distance is less than the diameter
of the LSF sphere, and convex otherwise. Algorithms were
implemented in Java, and use Java3D libraries for vector
math and JAMA libraries for solving eigenvalue problems.

Protein phosphatase 1B (PTP-1B) apo (2HNP) and pTyr
co-complex (1PTY) structures32,33 were taken from the
protein databank (PDB),34 and superimposed using MOE-
ProSuperpose (version 2003.02, Chemical Computing
Group). Practical applications are likely to involve patch
sizes defined by radii of 2–4Å. In our Java implementa-
tion, PTP-1B structures required approximately one and a
half hours using 2Å radius patches, and 5 h using 4Å
radius patches on a 2.4-GHz Pentium 4 machine running
Linux and using surface dot densities of 25 dots/Å2. The
algorithm scales quadratically with the number of points,
and decreasing the dot density to 10 dots/Å2 allows calcula-
tion of curvatures for 2Å radius patches in about 20 min for
the PTP-1B structures. The method is straightforward to
parallelize, and future work on code optimization can help
decrease the run-time. While we find simple Euclidean
distances work well to define the patches, a slightly more
sophisticated approach may involve measuring the mini-
mum distance between two points along the vertices of the
triangulated surface.

Generation of Protein Surface Curvature Graphics

To generate protein surfaces colored by curvature [Fig.
2(C)], PDB file B-factors were first replaced with atomic
curvature values, and then visualized by coloring the
surface by B-factor. Molecular surfaces [Fig. 2(C, D)] were
generated using the Pfizer Molecular Visualization Tool.
Curvature values used in the B-factor column are recipro-
cal radius values, scaled to the range 1–70, with 35
representing planarity. Specifically, the values we plot

here are �52 �
1
r � 35�, where positive r values represent

convex surfaces, and negative r values represent concave
surfaces, and r is the radius of curvature. This scaling of
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Fig. 2. LSF-sphere curvature. A: Geometric inversion of a circle. The image of a circle, C, under inversion in
C (green) is a circle, C�, if C does not pass through the center of C, or a line, L�, if C passes through the center of
C. B: Finding a best least squares fit sphere to a given surface patch (red) involves inversion of points
representing the surface patch using an inversion sphere (green) around a candidate point to generate the
inverted points (green), finding the best least-squares fit plane (depicted as a black line) to the inverted points,
and inversion of the fitted plane to give a candidate sphere (cyan). This process is repeated for every point on
the surface patch, and the best least squares sphere is retained. C,D: Stereo rendering of PTP-1B peptide
binding face colored by curvature for the unbound (PDB ID: 2HNP) and bound (PDB ID: 1PTY) structures,
respectively. Curvature is colored from red (highly convex) to white (flat) to blue (highly concave), where atomic
curvature is calculated using a 4Å radius. The pTyr’s from the bound structure have been mapped onto the
apo-structure as a reference. E,F: Curvature figures generated in GRASP for the unbound and bound
structures, respectively. In GRASP, the curvature is colored from dark gray (score of �100) to white (score of 0)
to dark green (score of around 30). G,H: To facilitate comparison of the two methods, curvature numbers
extracted from GRASP output are plotted onto the structure surfaces and colored using the same scale as in C
and D.
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values is purely for visualization purposes; the radius of
curvature values we calculate is physically interpretable
but must be scaled to a suitable B-factor range.

The GRASP solid angle method12,13 was used to make
figures for comparison purposes [Fig. 2(E–H)]. Curvature
values calculated at each surface vertex using default
settings were transformed into curvature values for each
atom by first associating the surface points with the closest
atom and then transforming these values into a single
value using the average value. We visually validated that
the average value provides a reasonably accurate represen-
tation of the computed surface curvature, and we also
provide the GRASP generated figures side-by-side for
comparison. The GRASP curvature values were then
transformed to B-factor column values by linearly scaling
the GRASP output of �100 to 100 to values of 1 to 70,
where a GRASP output of 0 mapped to a value of 35
representing planarity, and graphics were generated in
the Pfizer Molecular Visualization Tool.

RESULTS

We use a geometric transformation known as inversion
to solve a long-standing problem of finding a LSF sphere to
an arbitrary surface. A rapid alpha shape–based method
defines the protein surface, from which a dot surface is
generated. The problem of finding the LSF sphere to the
dot surface is solved by taking the problem into inverted
space, where it becomes a simpler plane-fitting problem.
The LSF plane is transformed using geometric inversion to
real space, yielding the LSF sphere. The sphere radius
then can be used to define the curvature (mathematically
termed the radius of curvature). The LSF-sphere method
is illustrated in Figure 2 (A, B) and described in detail in
Materials and Methods. We compare the algorithmic de-
tails and theoretical running times of the method to the
iterative method and a hyperplane-fitting method in a
separate work.35 We focus here on developing and validat-
ing the geometric inversion LSF approach for protein
structure analysis. We use PTP-1B in our validation
because it provides a large range of shallow and deep
pocket topologies, but we note that we have also applied
the method to over 200 proteins from the PDB without
issue.

We first validated that the LSF fit in inverted space has
a direct correlation in “real” space. Since points close to the
inversion point end up far away in inversive space (see
Materials and Methods), a weighting dependent on the
distance in “real” space is needed. Our weighting of d4 is by
analogy to Strandlie et al.36 For 25,000 randomly selected
surface patches of 2–6 Å radius covering the protein
PTP-1B, we found that the residual sum of squares from
the plane fit in inverted space follows that of the sphere fit
in “real” space with a correlation coefficient of r2 � 0.93
(r � 0.97). While the weighting scheme is not perfect, the
correlation is nevertheless quite good, and for smaller
patches the correlation is higher.

To validate the sphere fitting, we applied the method to
700 ideal spheres with radii ranging from 0.1 to 7Å in
increments of 0.1Å and dot densities of 10 to 100 dots/Å2 in

increments of 10, and found the LSF solution radii were
essentially perfect, with the worst error being 2 � 10�12Å.
Randomly selected sets of 10 dots were also sufficient for
finding the radii with similarly insignificant errors.

One advantage of our method is that the density of dots
is easily adjusted to increase computational speed. In
practice, there is a lower limit where the method is not
reliable because of poor representation of the surface. To
test the convergence of curvatures calculated for different
dot densities, LSF spheres were found for the 25,000
random patches using surface dot densities ranging from
10 to 60 dots/Å2, in increments of 5 dots/Å2. The patch is
defined by a set of points on a continuous surface within a
user-defined radius, which in this case was 4Å. For dot
densities of 10–60 dots/Å2, radius of curvature values for
97.1% of surface patches converge to within 1%. For dot
densities of 20–60 dots/Å2, curvature radius values for
98.0% of surface patches converge to within 1%, and 99.8%
converge to within 2.5%. The rare (0.2%) occurrence of
poor convergence appears to be due to a small subset of
saddle surfaces that are particularly sensitive to dot
density. Thus, different dot densities can be used depend-
ing on the accuracy and robustness desired, and dot
densities of 20–25 dots/Å2 are very robust. We have, thus,
found that the least squares curvature method performs
robustly and with high accuracy.

DISCUSSION

We have pointed out that the most straightforward
approach to measuring protein curvature is to solve for the
least-squares fitted sphere to the surface patch of interest.
The curvature is easily interpreted because it is simply the
radius of the sphere, and the sphere itself can be visual-
ized. We have developed a method that solves the LSF
sphere problem using a direct rather than iterative ap-
proach, by making the reasonable assumption that the
LSF sphere passes through at least one surface point. The
method is sensitive to the surface topology unlike solid-
angle methods, while it avoids the need for the indirect
approaches of differential geometry-utilizing methods.
Some available programs using differential geometry ap-
proaches for curvature calculation report a small but
significant failure rate that is likely in part due to the
complexity of the approaches. The algorithm presented
here is relatively simple, which leads to its robustness.

Currently the main drawback of our method is the
quadratic scaling of the algorithm. We have used high-
resolution dot densities of 25 dots/Å2 that result in 5–6-h
run times for typical proteins of �40 kD. While use of
lower resolution dot densities leads to a less accurate
surface representation for curvature calculations (see Re-
sults), we note that the commonly used 1–5 dots/Å2 does
reduce run times to a couple minutes. The advantage of the
method is that the sphere fitting is done in a guaranteed
time, unlike iterative search methods. The LSF approach
described here is robust, as detailed in the Results, and
allows calculation of curvature values for an arbitrary
surface.
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The ability to vary the surface patch size allows measure-
ment of curvature at different “resolutions.” For instance,
a 4Å radius patch can highlight macroscopic features such
as deep clefts for side-chain recognition, while a 2Å patch
allows identification of more nuanced atomic-level fea-
tures. In Figure 2, PTP-1B is colored according to curva-
ture using 4Å patches, allowing for easy visualization of
protein topology. Peptide recognition often involves clefts,
and coloring the PTP-1B apo structure in this way reveals
two connected clefts, colored blue in Figure 2(C), which
turn out to be the two binding pockets for bisphosphory-
lated substrate peptides.32, 33 While automated methods
are available for finding binding sites, they are typically
only useful for finding single deep clefts that are priori-
tized based on a calculated volume or buriedness.3–5

Peptides and peptidic ligand binding sites frequently
involve less well-defined clefts that automated methods
are not designed to find. Visual location of binding sites
can be effective in these cases, and can be substantially
aided by projection of quantitative curvature values.

Another illustrative application involves visualization of
conformational change. While overlay of protein back-
bones can reveal architectural changes between two pro-
tein isoforms, it is more difficult to visualize topology
changes. Since protein function is strongly influenced by
its shape, a method for visualizing shape changes can be
useful in understanding protein function. In Figure 2(D),
we show the bound structure of PTP-1B co-complexed with
two phosphotyrosines33 and colored by curvature. Visual
comparison with the apo structure shown in Figure 2(C)
reveals a striking topological change due to phosphoty-
rosine binding. This approach to visualizing conforma-
tional change is simple and has a clear interpretation.

To illustrate practical differences between the LSF
method and a solid angle method, curvatures were com-
puted in GRASP and displayed as shown in Figure 2(E, F).
To facilitate visual comparison, in Figure 2(G, H) we also
extracted the GRASP curvature values and scaled it in the
same fashion as done in Figure 2(C, D) (see Materials and
Methods). The deep clefts are as easily identifiable in the
GRASP solid-angle method as in the LSF method. Overall,
however, the GRASP surface appears to have less pro-
nounced curvature, probably due to the solid-angle method
only measuring the “edges,” whereas the LSF method is
sensitive to the whole surface patch. This less pronounced
curvature can be seen in the histogram of curvature values
shown in Figure 3. A non-linear scaling of the GRASP
curvatures may give greater discrimination of differently
curved surfaces, although this would further reduce the
physical interpretability of the curvature values. We note,
however, that the GRASP method has another interpreta-
tion that is not curvature per se, but is instead related to
excluded water area.13

Other factors such as intermolecular interactions and
entropic contributions are also important for understand-
ing function and how conformational changes affect func-
tion, but shape is a basic and fundamental property that
can be better visualized and understood using the physi-
cally intuitive curvature method we have described. While

we focused here on two illustrative applications that
involve projection of the quantitative calculated LSF curva-
ture onto a protein surface, the method is general and can
be used in multiple applications. Recent work by Tsuchiya
et al. shows that different protein curvature measures can
lead to improved prediction of protein-DNA binding inter-
faces,37 and in another recent work, Joughin et al.38

elegantly showed that computed surface curvatures from a
differential geometry approach39 can be used in conjunc-
tion with amino acid identities and computed electrostatic
potentials to successfully identify phosphopeptide binding
sites. It is conceivable that a physically intuitive curvature
can enhance both the interpretability and performance of
such approaches.
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