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ENSE CORE VESICLES RESEMBLE ACTIVE-ZONE TRANSPORT
ESICLES AND ARE DIMINISHED FOLLOWING SYNAPTOGENESIS
N MATURE HIPPOCAMPAL SLICES
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bstract—Large dense core vesicles (�100 nm) contain neu-
oactive peptides and other co-transmitters. Smaller dense
ore vesicles (�80 nm) are known to contain components of
he presynaptic active zone and thought to transport and
eliver these components during developmental synapto-
enesis. It is not known whether excitatory axons in area CA1
ontain such dense core vesicles, and whether they contrib-
te to synaptic plasticity of mature hippocampus. Serial sec-
ion electron microscopy was used to identify dense core
esicles in presynaptic axons in s. radiatum of area CA1 in
dult rat hippocampus. Comparisons were made among per-
usion-fixed hippocampus and hippocampal slices that un-
ergo synaptogenesis during recovery in vitro. Dense core
esicles occurred in 26.1�3.6% of axonal boutons in perfu-
ion fixed hippocampus, and in only 17.6�4.5% of axonal
outons in hippocampal slices (P<0.01). Most of the dense
ore vesicle positive boutons contained only one dense core
esicle, and no reconstructed axonal bouton had more than a
otal of 10 dense core vesicles in either condition. Overall the
ense core vesicles had average diameters of 79�11 nm.
hese small dense core vesicles were usually located near
onsynaptic membranes and rarely occurred near the edge
f a presynaptic active zone. Their size, low frequency,

ocations, and decrease following recuperative synapto-
enesis in slices are novel findings that merit further study
ith respect to small dense core vesicle content and pos-
ible contributions to synapse assembly and plasticity in
he mature hippocampus. © 2006 IBRO. Published by
lsevier Ltd. All rights reserved.

ey words: synaptic vesicles, presynaptic active zone, brain
lice, CA1, dendritic spine, serial section electron micros-
opy.

ittle is known about the mechanisms of presynaptic as-
embly on mature neurons. Rapid proliferation of dendritic

Correspondence to: K. M. Harris, Section of Neurobiology, University of
exas at Austin, 1 University Station, C7000, Austin, TX 78712-0132,
SA. Tel: �1-512-232-6564; fax: �1-713-799-8544.
-mail address: kharris@mail.ns.utexas.edu (K. M. Harris).
bbreviations: ACSF, artificial cerebrospinal fluid; ASD, adjusted syn-
ptic density; DCV, dense core vesicle; MSB, multisynaptic bouton;
t
sect, number of sections; PSD, postsynaptic density; SA, sample area;
SB, single-synapse bouton; SSV, small synaptic vesicle.

306-4522/06$30.00�0.00 © 2006 IBRO. Published by Elsevier Ltd. All rights reser
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pines during estrous, long-term potentiation (LTP), and
lice preparation involves the formation of new synapses
n pre-existing axonal boutons, resulting in more multiple
ynapse boutons (Fiala et al., 2002; Kirov et al., 1999; Toni
t al., 1999; Yankova et al., 2001). Under these circum-
tances, most of the machinery for the release of presyn-
ptic vesicles is already assembled presynaptically. What

s missing is the active zone. Evidence from cultured hip-
ocampal neurons shows that small dense core vesicles
DCVs) may provide rapid delivery of pre-assembled ac-
ive zones to new presynaptic sites in response to a
ostsynaptic signal (Ahmari et al., 2000; Vaughn, 1989; Ziv
nd Garner, 2004). These DCVs have been referred to as
piccolo/bassoon transport vesicles” because they contain
he proteins that are required for the assembly of presyn-
ptic active zones on developing neurons (Shapira et al.,
003; Zhai et al., 2001).

Nothing is known about the distribution of small DCVs
t mature hippocampal CA1 synapses, and whether it is
ltered during synaptogenesis and plasticity. Hence, it was
f interest to learn whether DCVs might also be available
o provide preassembled components to synaptic active
ones in the adult nervous system. DCVs may also contain
europeptides or growth factors (Torrealba and Carrasco,
004; Wu et al., 2004), which influence synaptogenesis.
uring the preparation of hippocampal slices from mature
nimals, presynaptic axons discharge many vesicles, glia

oose glycogen granules, dendritic microtubules are lost,
endrites become swollen and dendritic spines and syn-
pses are diminished (Fiala et al., 2003; Kirov et al., 2004;
ipton et al., 1995). The neurons then undergo a remark-
ble recovery once the slices are maintained in vitro in a

ife-support chamber for about 3 h. Much of the cellular
isruption is normalized relative to hippocampus fixed by

ntravascular perfusion, and dendritic spines with syn-
pses proliferate (Kirov et al., 1999, 2004). Evidence is
ccumulating that exposure to cold during slice prepara-
ion may trigger the spine loss and subsequent prolifera-
ion during re-warming (Fiala et al., 2003; Kirov et al.,
004; Roelandse and Matus, 2004). This rather rapid syn-
ptogenesis on mature neurons suggests that local den-
ritic and axonal mechanisms are required for the forma-
ion of new synapses.

Local dendritic protein synthesis and actin-based mech-
nisms could supply a new dendritic spine and postsynaptic
ensity (PSD) (Brunig et al., 2004; Martin, 2004; Smart and
alpain, 2000; Steward and Schuman, 2001). A local store
f DCVs in presynaptic axons, perhaps piccolo/bassoon

ransport vesicles, may help to generate new presynaptic
ved.
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ctive zones. If DCVs are involved in synapse formation in
he mature brain, then their contents may be released
uring robust synaptogenesis. Consequently, fewer DCVs
hould be evident in those axons that have recently un-
ergone slice-induced recuperative synaptogenesis. We
xamined this possibility by evaluating the distribution and
requency of DCVs in perfusion-fixed and recovered hip-
ocampal slices.

EXPERIMENTAL PROCEDURES

CVs were quantified in presynaptic boutons through serial sec-
ion electron micrographs from four mature male rats of the Long-
vans strain, two each from perfusion fixed and hippocampal
lices (see Table 1 in, Kirov et al., 1999). Methodological issues
elevant to the present analyses are briefly described here; Kirov
t al. (1999) should be consulted for the complete details. In
ddition, updated methods are posted on our website called “Syn-
pseWeb” at synapse-web.org. All experiments conformed to the
uidelines of the U.S. National Institutes of Health and were
eviewed by the Institutional Animal Care and Use Committee at
hildren’s Hospital, Boston. The number of animals used and their
uffering were minimized.

Intracardiac perfusions with fixative were done under pento-
arbital anesthesia (80 mg/kg) and started within one minute after
pening the chest cavity to minimize hypoxia–ischemia. For one
nimal, the fixative contained 2% paraformaldehyde and 2.5%
lutaraldehyde in 0.1 M cacodylate buffer with 2 mM CaCl2 and
mM MgCl2 at pH 7.4. (There was a misprint in the previously

ublished methods section stating 1 mM CaCl2 and 2 mM MgCl2,
espectively). Fixative was delivered to the body at 37 °C and

p.s.i. backing pressure of 95% O2 and 5% CO2. The other
nimal was perfusion fixed with 6% glutaraldehyde to match the
xation concentration used in the slices.

Hippocampal slices were prepared from rats that were first
nesthetized with 80 mg/kg pentobarbital to mimic the “pre-fixa-
ion” conditions of the perfusion protocol. Slices were cut at
00 �m thickness and received into ice-cold artificial cerebrospi-
al fluid (ACSF, containing 117 mM NaCl, 5.3 mM KCl, 26 mM
aHCO3, 1 mM NaH2PO4, 2.5 mM CaCl2, 1.3 mM MgSO4, and
0 mM glucose at pH 7.4 and bubbled with 95% O2–5% CO2).
lices were transferred via the blunt end of a micropipette to a net
t the interface of ACSF and humidified 95% O2–5% CO2 and
aintained at 32 °C for 9–10 h in vitro. Physiological recordings
ere made to demonstrate neuronal responsiveness in the slices,
nd then slices were fixed during 8 s of microwave irradiation in
ixed aldehydes (2% paraformaldehyde and 6% glutaraldehyde

n 0.1 M cacodylate buffer at pH 7.4 and containing 2 mM CaCl2
nd 4 mM MgCl2), and stored overnight in fixative at room tem-
erature (Jensen and Harris, 1989).

Perfusion-fixed hippocampus and hippocampal slices were
oth subsequently fixed in reduced osmium (1% OsO4 with 1.5%
4Fe(CN)6) followed by 1% OsO4, to enhance membranes; then
xposed to 1% aqueous uranyl acetate and dehydrated and em-
edded in epoxy resins and hardened at 60 °C for 48 h prior to
ollecting serial thin sections. The serial thin sections were stained
ith ethanolic uranyl acetate followed by Reynolds’ lead citrate.
erial sections were photographed in the middle of stratum radia-

um at a location about 150–200 �m from the CA1 pyramidal cell
ody layer. These protocols produced well-stained and readily

dentifiable DCVs (Figs. 1 and 2). All series were coded and
nalyzed blind as to condition.

Three-dimensional reconstructions and analyses were per-
ormed using the software entitled “Reconstruct” (developed by
r. John Fiala (Fiala, 2005), and freely downloaded from http://
ynapses.bu.edu). The vesicles were marked with a circular

tamp that was adjusted to match the circumference (C) of the e
esicle at its widest diameter if it happened to span more than one
ection. The vesicles were assumed to be approximately spherical
o that the average diameter was computed as (d�C/�). The
istances of DCVs to synaptic and non-synaptic plasma mem-
ranes were measured within or across serial sections as needed,
sing the z-trace tool in Reconstruct.

Adjusted synaptic densities (ASD, # synapses/100 �m3) were
omputed by feature (e.g. ASD of synapses with DCVs) as de-
cribed in Kirov et al. (1999) based on the following computations:
SD�(nsyn/HNA)�mean(1/nsect)�(1/st). Synapse number (nsyn)
as computed by counting the number of PSDs in the sample
rea (SA). Synapses crossing two of the four lines that defined the
ample frames on individual sections and one of the bounding
aces of the cube were excluded, as a physical dissector to
uantify synapse profiles, and minimize counting bias (Fiala and
arris, 2001b). Synapses were counted if the PSD was evident on

he sample section and if the presynaptic vesicles occurred on the
ample section or on an adjacent section. Synapse density is
arkedly influenced by elements occurring nonuniformly in the SA

i.e. myelinated axons, cell bodies, and large dendrites with sec-
ion profiles �0.94 �m2) so the areas of these elements were
easured and subtracted from the SA to obtain the homogeneous
europil area (HNA). PSDs have different shapes and sizes, and
he probability of capturing them on a single section differs in
roportion to the number of sections (nsect) they occupy. Thus, the
sect of each synapse occupied was counted, and the average
sect was computed for each group. The mean inverse of the nsect

er condition was used to adjust for any differences in viewing
robability (Fiala and Harris, 2001b). Sampling is also affected by
ection thickness which was obtained for each series by measur-
ng the diameters (d) of longitudinally sectioned mitochondria,
ounting the number of serial sections they occupied (n), and
omputing section thickness (st) as: st�d/n (Fiala and Harris,
001a).

Excel software (Microsoft, Redwood, CA, USA) was used to
rganize the data. Statistica (StatSoft, Tulsa, OK, USA) was used
o obtain means and standard deviations to perform statistical
nalyses, t-tests and the Kolmogorov-Smirnov statistic to com-
are distributions (criterion P�0.05) and graph the data.

RESULTS

CVs had similar appearances in both preparations
hether 2.5% or 6% glutaraldehyde was used and whether

he fixation was facilitated by microwave irradiation to
peed diffusion, as required for the immersion fixation in
lices (Figs. 1 and 2). Upon viewing through many serial
M sections, DCVs could be distinguished along the axons
f perfusion-fixed hippocampus (Fig. 1) and hippocampal
lices (Fig. 2). DCVs occurred among the small synaptic
esicles (SSVs) in some presynaptic axonal boutons (Figs.
a–d; 2a–f). Occasionally, a DCV was observed in the
icinity of a synaptic active zone (Fig. 1a, b) or at its edge
Fig. 2a, b). More often they were located near extrasyn-
ptic plasma membrane in a presynaptic axonal bouton
Fig. 1c, d; 2c-f); or in the regions between synaptic bou-
ons along the axons (Fig. 1e, f; 2 g, h). Depending on the
lane of view, tiny projections called “spicules” (Vaughn,
989) could be discerned along the surface of some DCVs
Fig. 2b, f).

Five series were analyzed from perfusion fixed hip-
ocampus (two from one animal and three from the other)
nd six series were analyzed from the hippocampal slices
three from each animal). Each PSD on the central refer-

nce section of the series was viewed through serial sec-

http://www.synapse-web.org
http://synapses.bu.edu
http://synapses.bu.edu
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ions to identify whether its presynaptic bouton contained
ne or more DCVs. Three segments of axons that were of
pproximately equal length were reconstructed in three
imensions to illustrate the varied distribution of DCVs
Fig. 3). Boutons containing DCVs formed synapses with
endritic spines of diverse morphologies (e.g. thin, mush-
oom, stubby, branched) having either macular or perfo-
ated PSDs. No significant differences were detected
egarding the presence of DCVs across these various
pine and synapse morphologies. Individual synaptic

ig. 1. DCVs (arrows) in stratum radiatum of hippocampal area CA1
ynapsing with a mushroom-shaped dendritic spine (m) and perfora
resynaptic bouton that synapses on a thin dendritic spine (t). A m
inter-bouton” region, presumably being transported along the leng
presynaptic bouton. Scale bar�0.5 �m in e for a, c, e. Scale bar�

n a, c, and e, respectively.
outons contained from 0 to nine DCVs. Most of the m
CV-containing boutons (70%) had a single DCV (Fig.
, Fig. 3a), while 30% had two or more DCVs per bouton
Fig. 2e, 2f, Fig. 3b, 3c).

A total of 257 DCVs were analyzed in 671 presynaptic
outons of asymmetric, presumably excitatory synapses.
CVs were larger with average diameters of 79.2�11 nm

han neighboring SSVs in the same boutons with average
iameters 46.6�5 nm in both perfusion-fixed brain and
ippocampal slices (P�0.00001, Fig. 4). In both condi-
ions, DCVs were located closer to the nonsynaptic plasma

on fixed brain. (a, b) DCV located in a presynaptic bouton of an axon
(c, d) DCV located near the nonsynaptic plasma membrane of a
D was located on adjacent serial sections. (e, f) DCV found in an
xon. The adjacent clear vesicles are freely floating, not located in
f for b, d, and f, which are higher magnification views of the DCVs
in perfusi
ted PSD.
acular PS
th of an a
0.1 �m in
embrane than to the presynaptic active zone (K-S sta-
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ig. 2. DCVs (arrows) found in recovered hippocampal slices. (a, b) Rare, morphologically docked DCV at the edge of a presynaptic active zone (SAZ)
t mushroom-shaped dendritic spine (m). (c, d) DCV is approximately equidistant between the SAZ and the nonsynaptic membrane of a presynaptic
outon which synapses on a mushroom-shaped dendritic spine (m) that has a perforated synapse. (e, f) Synaptic bouton of a thin dendritic spine (t)
ith two DCVs located closer to the nonsynaptic membrane than the SAZ. (g, h) DCV is in an inter-bouton region along the length of the axon. Tiny
ense-staining protrusions called “spicules” (arrows in b, f) were clearly observed projecting from the membrane of some DCVs. Scale bar�0.5 �m
n g for a, c, e, and g. Scale bar�0.1 �m in h for b, d, f, and h which are higher magnification views of the DCVs in a, c, e, and g, respectively.



t
w
m
a
c
e
t
p
d
b

D
c
v
2
D

t
v
P
a
6
a
t
l
b
D
t
p
a

i

F
a
s
g
h
b
i
a
a
d synaptic
D , 196, 10

K. E. Sorra et al. / Neuroscience 141 (2006) 2097–2106 2101
istic, P�0.00001). In fact, most of the DCVs were located
ithin a single vesicle diameter of the non-synaptic plasma
embrane (�50 nm; Fig. 5a) but many vesicle diameters
way from the presynaptic active zone (Fig. 5b). In several
ases, even when the DCVs were within two vesicle diam-
ters of the presynaptic active zone, they were still closer
o the non-synaptic membrane (inset, Fig. 5b). When com-
ared across perfusion and slice conditions, DCVs did not
iffer significantly in their distances from the plasma mem-
rane (P�0.31) or presynaptic active zones (P�0.24).

The relative ASDs (see Experimental Procedures) of
CV-containing presynaptic boutons were computed and
orrected for neuropil heterogeneity and differences in
iewing probabilities. In perfusion-fixed hippocampus,
6.1�3.6% of the axonal boutons contained one or more

ig. 3. Reconstructions of three axonal segments in s. radiatum of hip
s pale green with DCVs (dark blue), SSVs (yellow), mitochondria (pa
ynapse bouton (MSB) and two single synapse boutons (SSB). A DCV
reen) is near the mitochondrion in the central bouton. All of the spin
aving one large bouton that synapses with a mushroom spine and perf
outons (NSB) or “orphan sites” (Krueger et al., 2003), each containing

n an NSB and three in the large SSB. (c) An axon with two synaptic b
mushroom spine that has a perforated synapse (inset). A second sm
thin spine. That thin spine also formed a second synapse on its head w
istance to the nonsynaptic plasma membrane, distance to nearest pre
CV3 (64, 224, 224), DCV4 (73, 9, 9), DCV5 (82, 99, 316), DCV6 (94
CVs, whereas in slices, 17.6�4.5% of the boutons con- fi
ained one or more DCVs. Comparison of these ASDs re-
ealed the difference to be statistically significant (Fig. 6a,
�0.01). The DCVs found in slices were slightly smaller on
verage than those in perfusion-fixed hippocampus (Fig.
b). Subtle differences in tissue shrinkage between slices
nd perfusion fixed brain might have been responsible for
his size difference; however, this explanation seems un-
ikely because the SSV diameters were the same size in
oth conditions (Fig. 6b). Alternatively, more of the large
CVs may have been released during synaptogenesis in

he slices or some of the DCVs may have released only
art of their contents during a “kiss and run” event (Rutter
nd Tsuboi, 2004) in the slices.

Finally, we evaluated the probability of DCVs occurring
n various types of presynaptic boutons in both perfusion-

al area CA1 were completed. The reconstructed axons are illustrated
and dendritic spines (gray) with PSDs (red). (a) Axon with a multiple
MSB but not the other synaptic boutons. A multivesicular body (dark
this segment are thin with small macular PSDs. (b) Axonal segment

SD (inset). Along this axonal segment there are also three nonsynaptic
ar vesicles (yellow). Four DCVs were identified as indicated, with one
ne of these is a large SSB containing two DCVs and synapsing with
ton contains one DCV. This bouton makes a synapse on the neck of

erent axon (dark green). Measurements for each DCV were (diameter,
active zone in nanometers): DCV1 (74, 14, 270), DCV2 (66, 19, 769),
95), DCV7 (87, 20, 218), DCV8 (61,431,1709). Scale cube�0.5 �m3.
pocamp
le blue),
is in the

es along
orated P
small cle

outons. O
aller bou
ith a diff
xed and in hippocampal slices. First we confirmed earlier
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ndings (Kirov et al., 1999) that synaptogenesis in hip-
ocampal slices results in more multisynaptic boutons
MSBs, Fig. 7a). New MSBs might have formed via the
ddition of synapses to existing single-synapse boutons
SBs (i.e. SSB to MSBs conversion during synaptogen-
sis). However, the frequency of SSBs did not decrease in
lices (Fig. 7a, P�0.27). This observation suggests that
SBs were not the only source of new synapses. New
ynapses may also form at pre-existing nonsynaptic bou-
ons (e.g. dcv2 of Fig. 3b), which would replenish the SSB
opulation that became MSBs. New SSBs may also lose
CVs, consistent with the quantitative data showing fewer
CV-containing SSBs in slices relative to perfusion fixed
rain (P�0.05 Fig. 7b). Fewer MSBs contained more than
ne DCV in slices than perfusion fixed hippocampus, con-
istent with loss of DCVs when new synapses were added
o axonal boutons in slices (Fig. 7c, P�0.001).

DISCUSSION

hese findings provide the first three-dimensional quanti-
cation of DCVs in mature hippocampal axons. The DCVs
ccurred in 20–30% of the axonal boutons, most having

ust one DCV, and none were observed having more than
0 DCVs per fully reconstructed bouton. DCVs co-mingled
ith smaller clear vesicles in both synaptic and nonsynap-

ic boutons. They were occasionally positioned at the edge of
n existing active zone, but usually DCVs were located closer
o non-synaptic plasma membranes suggesting the possibil-
ty of selective targeting to the inner surface of the plasma

embrane of boutons. DCVs also occurred in the inter-bou-
on segments of these mature axons. Their low frequency
uggests that the contents of these DCVs are not intended for
ecretion of neurotransmitters or neuropeptides, which oc-
ur primarily in larger DCVs and at a higher frequency per
outon in other systems (Torrealba and Carrasco, 2004).
nstead the small DCVs in these mature CA1 radiatum
xons may deliver preassembled components to establish
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46.6±5 nm
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ig. 4. Neighboring SSV diameters were smaller than DCVs (n�257
easurements of each type of vesicle, P�0.00001). All data from the
erfusion-fixed and slice conditions are graphed together. (See also
ig. 6 for differences in DCV mean diameters.)
ew active zones, like those found at newly forming syn- t
ptic sites along developing axons in culture (Ahmari et al.,
000; Roos and Kelly, 2000; Ziv and Garner, 2004). DCVs
re synthesized in the soma and transported by slow an-
erograde mechanisms into axons; hence recovery of
CVs in distal axonal boutons may require a day or more.
n a time scale of hours to days, changes in their fre-
uency or location are thus sensitive indicators of altered
unction (Pierce et al., 1999). The reduced number of
outons containing DCVs in mature hippocampal slices is
onsistent with a role for DCVs in synaptogenesis in the
ature hippocampus. Their size and distribution are con-

istent with the hypothesis that these small DCVs are
vailable to transport preassembled components to active
ones. Further experiments are needed to assess the
omposition of these DCVs and whether they contain pic-
olo, bassoon, and other substances involved in the con-
truction of the presynaptic active zone.

The diameter of the DCVs in mature hippocampal ax-
ns averaged 80 nm, which is equal to DCVs in developing
ippocampal axons in culture (Ahmari et al., 2000; Ziv and
arner, 2004). Vaughn (1989) first suggested that DCVs
ay carry presynaptic active zones in packets and de-

cribed spicules emerging from DCVs as a possible source
f the active zone; similar spicules were observed on some
f the DCVs shown here in mature CA1 axonal boutons.
he surface of DCVs in cultured hippocampal axons has
een found to be immunolabeled with antibodies to piccolo
nd bassoon, proteins that are important for the assembly
f the presynaptic active zone (Shapira et al., 2003; Zhai
t al., 2001). These DCVs also occur at a low frequency of
bout two to five per bouton (Bresler et al., 2004); similar to
he frequency observed here in mature CA1 radiatum ax-
ns. New experiments will be needed to determine
hether the small DCVs in these mature axons also con-

ain piccolo, bassoon or other components of the active
one.

DCVs were first identified as membrane-bound or-
anelles containing a dense granular substance in glutar-
ldehyde and osmium fixed tissue of adrenergic terminals

n the autonomic nervous system (Peters et al., 1991). At
80 nm the DCVs described here are similar in size to the
orepinephrine and serotonin containing DCVs, however,
hese secretory DCVs occur in a much higher frequency at
undreds to thousands per axonal bouton (Buma and Rou-
os, 1986; Zhu et al., 1986; De Biasi and Rustioni, 1988;
eters et al., 1991; Cheng et al., 1995). DCVs with diam-
ters larger than 100 nm have been found to contain
euroactive peptides such as growth hormones, orexin,
ynorphin or neuropeptide Y (e.g. (Lowe et al., 1988;
arker et al., 1998; Torrealba et al., 2003; Valentino et al.,
001)). Although the peptidergic DCVs are co-localized
ith SSVs, many of these large DCVs are released at
onsynaptic sites and act via volume transmission through
xtracellular space (Martin, 2003). Large DCVs (80–
20 nm) that are immunoreactive for neuropeptides Y and
ynorphin modulate the release of neurotransmitter pre-
ynaptically in the hippocampus and are found in septal
holinergic axons on proximal CA1 dendrites as well as in

he mossy fiber boutons on proximal CA3 dendrites (Pickel et
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l., 1995; Pierce et al., 1999). DCVs in the hilus and mossy
bers occur at a frequency of more than 10 per thin section,
or a total of hundreds to thousand per synaptic bouton (Chi-
urel and Harris, 1992; Torrealba and Carrasco, 2004). More-
ver, the large DCVs appear to occur at this high frequency

n every synaptic bouton of those systems. In contrast, neu-
opeptide Y immunoreactive axons in hippocampus, and glu-
amatergic axon terminals in cortical and thalamus are
resented in the literature as not containing many DCVs
Pickel et al., 1995; Torrealba and Carrasco, 2004), similar
o those measured here in s. radiatum of area CA1.

During development, dendritic spines evolve from filopo-
ial outgrowth, migration of synapses along a filopodium

oward the dendritic shaft, and subsequent enlargement of

0.05 0.15 0.25 0.35 0.

DCV D

0

10

20

30

N
u

m
b

e
r 

o
f O

b
se

rv
a

tio
n

s

5b

0.05 0.15 0.25 0.35 0

DCV D istance

0

30

60

90

120

150

N
u

m
b

e
r 

o
f o

b
se

rv
a

tio
n

s

5a

ig. 5. Location of DCVs within synaptic boutons relative to the nonsy
y the nearest edge of the PSD (P, insets). (a) Most of the DCVs wer
ost of the DCVs were located more than 100 nm away from th
erfusion-fixed and slice conditions for these measurements so all of
pine heads with synapses (Fiala et al., 1998; Harris, t
999; Marrs et al., 2001; Petrak et al., 2005). If all DCVs
ere only involved in synapse formation at new presynap-

ic boutons, then we would have expected to see DCVs
ocated only in nonsynaptic boutons or in boutons synaps-
ng on filopodia, dendritic shafts or small stubby spines.
nstead, DCVs were in boutons that synapsed with den-
ritic spines of all shapes and sizes, and some DCVs were
ituated at the edge of active zones. In addition, DCVs
ppeared to be lost from all types of presynaptic boutons.
hese locations support the hypothesis that DCVs not only
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o a lesser extent single synapse boutons (Kirov et al., 1999).
n a subset of the same slices, 4% of vesicle-containing
outons had no postsynaptic partners (Shepherd and Harris,
998), namely “orphan sites” (Krueger et al., 2003). Due to

heir relatively low frequency, additional experiments will
e needed to determine whether the frequency of orphan
ites declines during synaptogenesis in the mature brain.
evertheless, the observation of occasional orphan sites
ontaining DCVs in mature axons (e.g. Fig. 3), suggests
hat they might be the source of new presynaptic boutons.
here was also a decrease in the proportion of multiple
CV containing MSBs, consistent with the idea that loss of
CVs turned them into single DCV containing MSBs dur-

ng recuperative synaptogenesis in slices. One might then
redict that MSBs with one or zero DCVs should also have
ore PSDs than MSBs with multiple DCVs. Alternatively,
SBs with multiple DCVs could have become MSBs. It was
ot possible to address this question directly because most
SBs contain only two PSDs and only in rare instances are

here three or more PSDs on a single MSB (Sorra and Harris,
993). New imaging methods will be needed to monitor
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ependent on TrkA, and antibodies to TrkA are localized to
ytoplasmic patches among synaptic vesicles and occa-
ionally label DCVs (Barker-Gibb et al., 2001). At active
lutamatergic synapses, the signaling cascades associ-
ted with glutamate receptors may compete with growth
actors to stabilize spines as well as suppress new spine
utgrowth (Mattson et al., 1988; Mattson, 1990; McKinney et
l., 1999; Luthi et al., 2001; Schwyzer et al., 2002). Con-
ersely, when glutamatergic transmission is suppressed, the
rowth factors may stimulate spine formation and synapto-
enesis (Kirov et al., 1999). New experiments will be needed

o determine whether the DCVs in mature hippocampal ax-
ns contain growth factors or if growth factors are restricted
o cytoplasmic domains in these boutons.

Primary and secondary lysosomes also have dense
ores (Peters et al., 1991). They are distinguished from
CVs in that their electron dense centers are less granular
nd extend to the edges of the vesicle where the surround-

ng membrane is often obscured. Lysosomes are also
arger than the DCVs measured here, ranging in size from
00–200 nm. Lysosomes were not observed in this sam-
le of synaptic boutons from mature hippocampal axons.

CONCLUSIONS

uring the preparation of hippocampal slices, neurons un-
ergo considerable reorganization, synapse loss, and subse-
uently exuberant synaptogenesis during recovery. This re-
rganization motivated a search for local presynaptic or-
anelles that could be involved in rapid assembly of the
resynaptic active zones. We elucidated characteristics of
mall DCVs in the presynaptic axons of the CA3 to CA1
ynapse that might facilitate rapid synaptogenesis in the
ature hippocampus. The relatively small size, sparse
umber, location typically near the plasma membrane, but
way from existing active zones, and loss during synapto-
enesis, suggest that these small DCVs might be transport
esicles involved in synaptogenesis. They might also se-
rete growth factors. Productive avenues for future re-
earch should reveal the composition of these DCVs in
ature axons and whether they respond differentially to

ynapse formation, growth, or elimination during synaptic
lasticity such as long-term potentiation, long-term depres-
ion, or learning and memory.
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