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ABSTRACT: There has been an explosion of new information on the
neurobiology of dendritic spines in synaptic signaling, integration, and
plasticity. Novel imaging and analytical techniques have provided impor-
tant new insights into dendritic spine structure and function. Results are
accumulating across many disciplines, and a step toward consolidating
some of this work has resulted in Dendritic Spines of the Hippocampus.
Leaders in the field provide a discussion at the level of advanced under-
graduates, with sufficient detail to be a contemporary resource for re-
search scientists. Critical reviews are presented on topics ranging from
spine structure, formation, and maintenance, to molecular composition,
plasticity, and the role of spines in learning and memory. Dendritic Spines
of the Hippocampus provides a timely discussion of our current under-
standing of form and function at these excitatory synapses. We asked
authors to include areas of controversy in their papers so as to distinguish
results that are generally agreed upon from those where multiple inter-
pretations are possible. We thank the contributors for their insights and
thoughtful discussions. In this paper we provide background on the struc-
ture, composition, function, development, plasticity, and pathology of
hippocampal dendritic spines. In addition, we highlight where each of
these subjects will be elaborated upon in subsequent papers of this special
issue of Hippocampus. Hippocampus 2000;10:501–511.
© 2000 Wiley-Liss, Inc.
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STRUCTURE OF HIPPOCAMPAL
DENDRITIC SPINES

Hippocampal pyramidal neurons, like neurons in other brain regions,
have a variable assortment of spines and spine-like protrusions emerging
from their dendrites. Dendritic spine structure at any single point in time
reflects a dynamic structure that may undergo numerous changes in shape,
both slowly and rapidly, over its lifetime. Neighboring spines, along even a
short segment of dendrite, exhibit a broad range in spine morphologies Fig.
1, Table 1). In hippocampal area CA1, spine neck diameters range from
0.04–0.5 mm, while total spine length ranges from roughly 0.2–2 mm
(Harris and Stevens, 1989). There is also more than a 50-fold difference
among other spine dimensions that varies proportionately with synaptic and

presynaptic parameters (Table 1, Fig. 1) (Harris and
Kater, 1994; Lisman and Harris, 1993).

Dendritic spine shape varies over a continuum of mor-
phologies from short to long, thin to thick-necked, head-
less to large pedunculated structures. The distribution of
shapes is skewed toward thin spines in the adult brain. A
thin spine has a total length greater than the neck diame-
ter ending in a small bulbous head (,0.6 mm in diame-
ter; Fig. 1b). Stubby spines are short and wide with no
constriction in their necks (Fig. 1A). Sessile spines are
longer than their diameter but have no bulbous head.
Mushroom spines have a constricted neck and a large ir-
regular head (.0.6 mm in largest diameter; Fig. 1B). In
mature hippocampal areas CA1 and dentata, these four
types of dendritic spines usually have only one synapse on
their head. Branched spines have multiple heads that
emerge from a shared origin. In hippocampal areas CA1
and dentata, each head of a branched spine synapses with
a different presynaptic axon, while some heads have no
presynaptic partners (Sorra et al., 1998; Trommald and
Hulleberg, 1997). In contrast, different heads of the
“thorny excresences,” which are highly irregular and large
spines on CA3 pyramidal cells, can be innervated by the
same or different axonal boutons (Chicurel and Harris,
1992). Classifying spines first by their shape has proven
useful to ensure that the full range in morphologies is
sampled for three-dimensional reconstructions, and in
determining whether shifts in spine morphology occur
with experimental manipulations (Kirov et al., 1999;
Sorra and Harris, 1998; Chicurel and Harris, 1992; Har-
ris et al., 1992; Harris and Stevens, 1989).

Serial electron microscopy (EM) is needed to make
these subtle distinctions in dendritic spine shape because
their classification is often dependent on dimensions be-
yond the resolution of light microscopy. Fluorescence,
confocal, or two-photon laser scanning microscopy en-
able observation of individual dendrite protrusions in
living neurons, and in some cases spines can be distin-
guished from filopodia (see Methods in Parnass et al., this
issue). Mature dendrites have so many spines (1–10
spines/mm) that profiles of neighboring spines often
overlap one another and interfere with the study of spine
shape. In addition, it is not possible to distinguish with
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light microscopy whether dendritic protrusions have a synapse,
especially on immature neurons (Fiala et al., 1998). Adding indi-
cator dyes, such as those that respond to calcium influx, facilitates
the interpretation that a dendritic protrusion is activated by a
synapse, although nonsynaptic calcium channels cannot be ruled
out as a possible source. Combining real-time imaging with post
hoc serial electron microscopy of identified spines provides an
unequivocal approach (see Mackenzie et al., 1999), although reli-
able labeling of synapses is needed to distinguish neighboring,
“unaffected” spines at the EM level. Such an approach also makes
it possible to identify whether changes in other subcellular compo-
nents of the spine are involved. Several papers within this supple-
ment provide further insight into current and future possibilities of
combining experimental approaches to link dynamic spine struc-
ture with synapse location and composition (see Deller et al.,
Korkotian and Segal, Matus and Brinkhaus, Muller et al., Parnass

et al., Smart and Halpain, Rao and Craig, and Zhang and Benson,
this issue).

ORGANELLES IN DENDRITIC SPINES

Specific spine shapes are also associated with distinct synapse
morphologies and subcellular organelles. Below, the structure of
spine organelles is described, followed by a brief overview of their
molecular composition.

Postsynaptic Density

Working from the synapse to the origin of the spine with the
dendrite, the first organelle encountered is a dense thickening,

FIGURE 1. Reconstructed dendrite segment, dendritic spines,
and representative electron micrographs (EM) from which the recon-
struction was created (rat hippocampus, area CA1). A: Section 59 of
the EM series, illustrating a stubby spine (s) with a macular postsyn-
aptic density. B: Section 66 of the EM series, showing thin (t) and

mushroom-shaped (m) spines along the same dendritic segment.
Spine apparatus (sa) is present within the mushroom spine neck, as is
a tubule of smooth endoplasmic reticulum (ser) within the thin spine.
mito, mitochondrion within the dendrite. Scale bar (0.5 mm) is for A
and B.
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called the postsynaptic density (PSD). The PSD is attached under
the surface of the spine membrane either at the top or side of the
spine head, across from a vesicle-containing presynaptic axon. The
PSD ranges in shape from a simple disc (macular PSD) or a perfo-
rated annulus (perforated PSD), to a highly irregular or segmented
structure (Fig. 2). PSD dimensions are proportional to total spine
volume, number of presynaptic vesicles, and quantity of organelles
within the spine (Spacek and Harris, 1997; Harris et al., 1992).

Smooth Endoplasmic Reticulum (SER)
and Polyribosomes

SER is an organelle of elongated, flattened, or enlarged cisternae
found in about half of the hippocampal dendritic spines. Spine
SER is continuous with SER of the dendrite (Spacek and Harris,
1997). SER likely regulates the concentration of calcium in spines
(see Spine Functions, below). In about 1 in 15 mature dendritic
spines, the SER elaborates into a structure called the “spine appa-
ratus” (Fig. 1B; see also Deller et al., this issue; Spacek and Harris,
1997; Westrum et al., 1980). In hippocampal area CA1, the spines
containing a spine apparatus are large and mushroom-shaped, with
a perforated or irregular PSD (Spacek and Harris, 1997). The spine
apparatus is composed of stacks of SER laminated with densely
stained material. Polyribosomes, rough endoplasmic reticulum
(RER), and smooth vesicles are also frequently in spines with a
spine apparatus (see Synapse Web, Boston University, http://
synapses.bu.edu). The function of the spine apparatus is unknown.
However, its ultrastructure suggests that it may be involved in the
synthesis of membrane-bound proteins and their transport, similar
to the RER and Golgi apparatus in the cell soma. Polyribosomes
also occur freely in the dendritic spine cytoplasm (see Fig. 3E)
(Chicurel et al., 1993; Steward and Reeves, 1988; Steward and
Levy, 1982; Synapse Web, Boston University, http://synapses.
bu.edu).

Endosomal-Lysosomal Pathway

Coated vesicles, endosomes, and multivesicular bodies are also
found, particularly in the large dendritic spines (Spacek and Har-

TABLE 1.

Ranges in Dimensions of Hippocampal Dendritic Spines and Their Synapses

Dentate gyrusa Area CA3b Area CA1c

Neck diameter (mm) 0.09–0.54* 0.20–1.00 0.038–0.46
Spine length (mm) 0.20–1.78 0.60–6.50 0.160–2.13
Spine volume (mm3) 0.003–0.23 0.13–1.83 0.004–0.56
Head volume only (mm3) 0.003–0.55
Postsynaptic density area (mm2) 0.003–0.23 0.01–0.60 0.008–0.54

*Ranges in neck diameter were calculated from published values of average cross-sectional area based
on the formula pr2.
aTrommald and Hulleberg, 1997.
bHarris and Kater, 1994; Chicurel and Harris, 1992.
cHarris and Stevens, 1989.

FIGURE 2. Diversity in postsynaptic densities (PSDs) on hip-
pocampal dendritic spines. Electron micrographs of a macular (A),
perforated (B), and segmented (C) PSD. Arrowheads indicate dark-
staining PSD from the postsynaptic side of the synapse. D–F: Three-
dimensional reconstructions, showing a full range of PSD morphol-
ogies. Reconstructions are illustrated en face. Scale bar in A and D,
0.5 mm.
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FIGURE 3. Dendritic spine function. A: Spines exist to increase
the packing density of synapses. Schematic illustrates a cross section
through two dendrites (shaded), one without and one with dendritic
spines. Convolution and interdigitation of dendrite, axon, and spine
membranes support more synapses. B: Spines exist as principal sites of
excitatory synaptic transmission. C: Spines exist to amplify electrical
potential at the synapse and promote associativity among neighbor-
ing synapses. Spine shape and resistance of the spine neck may influ-
ence potential (V) generated by synaptic activation. D: Spines exist as

molecular compartments. Smooth endoplasmic reticulum (tubules),
calcium, and a myriad of other signaling mechanisms (stippling) are
recruited in response to synaptic activation (asterisk). E: Three-di-
mensional reconstruction of thin spines emerging from a dendrite.
Polyribosomes (black dots) are most frequent at the base of dendritic
spines, although they can also occur within them (see thin spine at
bottom). Areas of synaptic membrane are shown in dark gray (rat
hippocampus, area CA1).
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ris, 1997). Endosomes are distinguished from the SER by their
more tubular structure and a direct connection with coated vesicles
and multivesicular bodies. Thus, local degradation of proteins can
occur within dendritic spines.

Mitochondria

Mitochondria are conspicuously absent from most dendritic
spines, though they are abundant within dendrites (Fig. 1). In the
hippocampus, mitochondria have only been detected in the larg-
est, complex spines of area CA3 (Chicurel and Harris, 1992). To
generate the energy needed for signal transduction in the spine,
ATP from dendritic mitochondria may diffuse into the spine, or
glycolytic production of ATP may occur directly at the synapse
(Wu et al., 1997).

Cytoskeleton

Hippocampal dendritic spines have an actin-based cytoskeleton
that is distinguished from dendritic cytoskeleton by the absence of
microtubules and intermediate filaments (Kaech et al., 1997;
Markham and Fifkova, 1986; Cohen et al., 1985; Matus et al.,
1982). Occasionally, the larger CA3 dendritic spines have one or
more microtubules within them (Chicurel and Harris, 1992). The
cytoskeleton in spines, as is the case for many actin-based struc-
tures, participates in rapid changes in form. Rao and Craig (this
issue) compare the spine cytoskeleton to other actin-based struc-
tures including lamellopodia, filopodia, microvilli, and stereocilia.

A major extension of this research is to determine the molecular
basis of spine motility. Smart and Halpain (this issue) discuss rel-
evant “pools” of actin filaments, and growing numbers of actin-
regulatory proteins are reviewed. Matus and Brinkhaus (this issue)
present findings to the effect that different glutamate receptors
interact with spine motility. Synaptopodin, a novel cytoskeletal
protein, is uniquely positioned to influence spine dynamics and is
discussed by Deller et al. (this issue). In addition, Rac signal trans-
duction is a likely pathway by which extracellular cues are trans-
duced to intracellular signals, resulting in changes to spine shape
(Nakayama and Luo, this issue). Collectively, these data provide
insight into whether actin-based changes in spine form alter syn-
apse function.

MOLECULAR COMPOSITION OF DENDRITIC
SPINES AND THEIR SYNAPSES

Several papers in this issue provide detailed analyses of the mo-
lecular composition and function in dendritic spines (see Zhang
and Benson; Rao and Craig). Here we provide a brief overview in
relationship to the structural components described above.

Synaptic Membrane

Dendritic spines contain a complex mixture of ions, lipids, pro-
teins, and other signaling molecules. The most widely studied pro-
teins have been those in the PSD. Hippocampal PSDs contain

receptors, calcium/calmodulin-dependent kinase II (CaMK II),
and a myriad of signaling and structural proteins (Walikonis et al.,
2000; Ziff, 1999; Kennedy, 1998). For example, there are at least four
distinct classes of glutamate receptors including, N-methyl-D-aspar-
tate (NMDA), a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate
(AMPA), kainate, and metabotropic glutamate receptors (mGluRs),
which occur at discrete locations within the synaptic membrane
(Racca et al., 2000; Nusser et al., 1998; Baude et al., 1995).
NMDA receptors are located in the center of the PSD and are
found at most hippocampal synapses (Racca et al., 2000). AMPA
glutamate receptors are more evenly distributed across the surface
of the PSD, though they are detected in fewer hippocampal syn-
apses, especially during development (Lujan et al., 1996). Metabo-
tropic glutamate receptors cluster at the outer edges of the PSD and
are detected in about half of the hippocampal synapses (Lujan et
al., 1996).

Cell-Adhesion Junctions

Cell-adhesion junctions, also known as “puncta adherentia,”
occur between the presynaptic axon and postsynaptic dendritic
spine at the edges of the PSD in about 33% of CA1 synapses
(Spacek and Harris, 1997). Puncta contain molecules distinct from
the PSD such as the neural-cell adhesion molecule (NCAM), cad-
herins, catenins, and nexilin (Ohtsuka et al., 1998; Uchida et al.,
1996). The mGluRs also occur at the edges of the PSD close to (or
at) the puncta adherens. Puncta adherens can be confluent with
SER in the spines. Hence, mGluRs and their associated Homer
proteins are positioned to trigger release of Ca21 from SER, via
phosphinositide or ryanodine receptors on the SER (Fagni et al.,
2000; Tu et al., 1998; Brakeman et al., 1997).

Receptor Clustering and Targeting Molecules

In addition to receptors, the PSD contains specific proteins that
bind receptors. The PSD-95 protein and guanylate kinase-associ-
ated proteins (GKAPs) are major contributors to glutamate recep-
tor clustering on the spine head (Kim and Huganir, 1999; Rao et
al., 1998; Kim et al., 1997). Other clustering proteins have been
identified and are differentially associated with either the NMDA,
AMPA, or metabotropic glutamate receptors. For instance, PSD-
95/SAP90, PSD-93/Chapsyn, and SAP-102 have been identified
and bind directly to NMDA receptor subunits (Brenman et al.,
1996; Kim et al., 1996; Lau et al., 1996; Muller et al., 1996;
Kornau et al., 1995; Cho et al., 1992; Kistner et al., 1993). On the
other hand, SAP97, another member of the “synapse-associated”
family of proteins, binds to AMPA receptors in vitro (Leonard et
al., 1998). Other protein-protein interactions relevant to receptor
targeting are being uncovered both early in development and in
adults (Sans et al., 2000; Rao et al., 1998). Rao and Craig (this
issue) review a model of PSD assembly at developing hippocampal
synapses.

Thus the diversity in composition of organelles and molecules
among dendritic spines provides evidence for their functional di-
versity.
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DENDRITIC SPINE FUNCTIONS

Spines Increase the Packing Density
of Synapses (Fig. 3A)

Dendritic spines likely evolved to support the vast number of
synapses that occur between individual neurons (Fiala and Harris,
1999). Flatworms (Planaria) are the simplest organisms possessing
bilateral symmetry and a primitive brain. Several different types of
planarian neurons have dendritic spines (Reuter and Gustafsson,
1995; Sarnat and Netsky, 1985; Keenan et al., 1981). Other in-
vertebrate neurons also exhibit spine-like structures including hon-
eybee Kenyon cells, and neurons of the squid giant synapse (Bran-
don and Coss, 1982; Young, 1973), and thus dendritic spines
appeared well before the evolution of complex mammalian brains.
Dendritic spines allow dendrites to reach beyond their surface to
synapse with axons 1–2 mm away. In neuropil densely packed with
axons and dendrites, the extension of dendritic spines allows in-
creased synaptic density. Consider the simple case of an orthogonal
relationship between dendrites and axons (Fig. 3A). In any one
plane there can be only two synapses, one on each side of a dendrite
without spines. Dendrites with spines can reach beyond to connect
with axons in adjacent rows, thereby at least doubling the density
of possible connections. In addition, the dendritic spines allow
efficient interdigitation between neighboring processes, thereby
achieving the high synapse packing density in the neuropil.

Spines Are Sites for Excitatory Synaptic
Input (Fig. 3B)

Hippocampal spines are primarily sites of excitatory glutamater-
gic synaptic transmission (Fig. 3B). Hippocampal spines differ
from spines in other brain regions (Groves et al., 1994; de Zeeuw
et al., 1990; Gerfen, 1988; Spacek and Hartmann, 1983), because
they rarely have inhibitory or peptidergic modulatory synapses on
them (Trommald and Hulleberg, 1997; Harris and Stevens,
1989). Instead, these modulatory synapses tend to be located on
the neighboring dendritic shaft or cell soma in the hippocampus.

Spine Neck Constrictions Amplify Voltage
at the Synapse and Facilitate Associativity
Between Synapses (Fig. 3C)

Many biophysical models suggest that spine necks can slow
charge-transfer from the synapse to the parent dendrite (Segev and
Rall, 1988, 1998). Hence there is a larger potential in the spine
head for a transient period after synaptic activation which facili-
tates the opening of voltage-dependent channels. Most spines are
not long or thin enough to prevent the eventual transfer of charge
from the synapse to the parent dendrite, where it would be trans-
ferred to neighboring spine synapses (Svoboda et al., 1996; Harris
and Stevens, 1989). This shared potential could facilitate associa-
tivity during weak and strong coactivation among neighboring
spine synapses (Shepherd, 1996; Harris and Kater, 1994).

Spines Provide Synapse Specificity Via
Molecular Compartmentalization and
Local Protein Synthesis (Fig. 3D,E)

Imaging experiments show that spines compartmentalize calcium
such that localized changes in intracellular calcium at an active synapse
do not spread to neighboring inactive synapses (Yuste and Denk,
1995; Guthrie et al., 1991; Muller and Connor, 1991). Spine shape
and size likely contribute to differences in calcium kinetics (see Korko-
tian and Segal, this issue; Majewska et al., 2000), and these kinetic
differences translate into different signaling events at the synapse. Such
localized changes in spine calcium result from influx through voltage-
gated or ligand-gated ion channels (e.g., NMDA receptors), or release
from intracellular stores (SER). Depending on the source or change in
intraspine calcium, different signaling mechanisms may be evoked
(Berridge, 1998). Recent evidence suggests that elevated calcium is
sufficient to alter spine length, thereby coupling compartmentaliza-
tion with an overall change in spine structure (Korkotian and Segal,
1999).

Polyribosomes localized to postsynaptic sites provide a substrate for
local and spine-specific translation of proteins (Fig. 3E). Certain pat-
terns of synaptic activation regulate rapid targeting of receptor pro-
teins to dendritic spines (Shi et al., 1999). Perhaps a polyadenylation
signal regulates protein synthesis within, and/or mRNA translocation
to certain spines and not others (Wells et al., 2000).

FORMATION OF DENDRITIC SPINES

Spine Formation During Development

Hippocampal dendrites display numerous filopodia, some of
which have synapses on them during the first 2–3 postnatal weeks
(Fiala et al., 1998; Papa and Segal, 1996; Ziv and Smith, 1996).
Filopodia are dendritic specializations that can be difficult to distin-
guish from dendritic spines at the light microscopic level (including
confocal and two-photon laser scanning microscopy). Electron micro-
scopic evaluation shows that filopodia are typically long and have a
darker cytoplasm than spines. In addition, filopodia usually end in a
pointy rather than a bulbous head, and can be much longer than
mature dendritic spines (Fiala et al., 1998). In long-term organotypic
cultures, filopodia extend and retract with a half-life of about 10 min
(Wong and Wong, 2000; Dailey and Smith, 1996; Ziv and Smith,
1996). Recent studies show that filopodia are also quite transient in
acute hippocampal slices (Parnass et al., this issue) and in the intact
cortex from young animals (Lendvai et al., 2000). Even when filopo-
dia are relatively abundant during the early postnatal period, only
about 25% of synapses occur on them; the other 75% occur directly
on dendritic shafts. These findings suggest that filopodia are precur-
sors to shaft synapses, which then mature into dendritic spines (Fig. 4)
(Fiala et al., 1998; Harris et al., 1992).

Spine Formation in the Mature Hippocampus

Mature hippocampal neurons also produce new dendritic
spines. For example, new dendritic spines are generated within a
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few hours after preparing adult hippocampal slices compared to
perfusion-fixed hippocampus in vivo (Kirov and Harris, 1999;
Kirov et al., 1999). New spines form and regress during estrus in
the cycling female rat (Woolley and McEwen, 1993; Woolley et
al., 1990), and during hibernation and awakening (Popov et al.,
1992). Environmental enrichment leads to the preservation or for-
mation of more dendritic spines (Rampon et al., 2000). Where
spine formation on mature neurons has been studied with serial
EM, the new spines are consistently found to make synapses with
preexisting axonal boutons, forming structures called multiple syn-
apse boutons. It remains to be determined whether synaptogenesis
in the mature brain also involves transient filopodia.

PLASTICITY IN DENDRITIC SPINE
STRUCTURE

Plasticity describes changes in dendritic spine number or mor-
phology. Both the type and degree of plasticity may differ with age,
brain region, and experimental conditions. It is also important to
distinguish the motility of existing dendritic spines from the for-
mation of new dendritic spines or protrusions (as described above),
because motility at existing spines certainly has functional impli-
cations quite different from the formation or loss of dendritic
spines.

Long-Term Potentiation

Long-term potentiation (LTP) is a long-lasting enhancement of
synaptic transmission, widely thought to be a candidate learning and
memory mechanism mediated in part by changes in spine number or
structure (Malenka and Nicoll, 1999; Bliss and Collingridge, 1993;
Bliss and Lomo, 1973). During development, new dendritic protru-
sions form in the vicinity of local synaptic potentiation and last for at

least an hour and up to several hours in vitro (Engert and Bonhoeffer,
1999; Maletic-Savatic et al., 1999). In contrast, no long-lasting change
in total spine number occurs after LTP in mature neurons (Sorra and
Harris, 1998), but instead mature neurons undergo extensive spine
proliferation when synapses are globally silenced (Fig. 5) (Kirov and
Harris, 1999). At the other extreme, intense activation of immature or
mature hippocampal neurons leads to a loss of dendritic spines
(Korkotian and Segal, 1999; Halpain et al., 1998; Jiang et al., 1998;
Drakew et al., 1996).

Historically it has been difficult to ascertain the morphological basis
of LTP, because newly potentiated synapses cannot be distinguished
from previously potentiated, depressed, or inactive synapses (Sorra
and Harris, 1998). Clearly an unbiased anatomical marker of synapses
reflecting these variable states of activation is needed. A first step to-
wards activity-dependent labeling of synapses for serial electron mi-
croscopy that have undergone LTP was recently completed (see Mul-
ler et al., this issue). The approach involved detection of a calcium
precipitate in the spine apparatus (e.g., SER) of activated synapses. As
pointed out by the investigators, the study was limited to the evalua-
tion of spines that contain a spine apparatus (;10% of spines), be-
cause only these show a detectable increase in the calcium precipitate.
By 10 min after onset of potentiation, there began a transient upregu-
lation of perforated synapses lasting about 30 min. Later, the fre-
quency of synapses on multiple synapse boutons increased. While this
research provides new insights about a small subset of hippocampal
synapses, a label is needed to mark the activation or potentiation status
of all synapses to unravel the role of spine structural plasticity with
LTP.

Learning and Memory

The concept of synaptic and spine plasticity as a mechanism of
learning and memory was first introduced over a century ago.
Modern gene-targeting approaches have produced mice lacking
AMPA or NMDA receptor subunits (Rampon et al., 2000; Tang et
al., 1999; Zamanillo et al., 1999). Mice lacking AMPA receptor

FIGURE 4. Spine formation during development. Possible mechanisms by which filopodia
support stubby/shaft synapse or spine formation. A: Synapses form on the receptive surface of
filopodia (gray). B: Filopodia retract, followed by stabilization of the synapse on a stubby protru-
sion. C: Synapse stabilization ensues via maturation of a dendritic spine.
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subunit GluR-A appear to develop normal hippocampal synapses
that do not express LTP, yet spatial learning is preserved (Zama-
nillo et al., 1999). Mice that selectively lose NMDA-receptor ex-
pression in hippocampus also fail to express LTP and exhibit pro-
found impairment during learning and memory tasks (Rampon et
al., 2000; McHugh et al., 1996; Tsien et al., 1996). This deficit,
however, appears to be overcome by rearing NMDA receptor
knockout mice in “enriched” environments that produce more
dendritic spines in an NMDA-independent fashion (Rampon et
al., 2000). Implications for these findings are discussed further by
Rampon and Tsien (this issue).

Spine Pathology

Dendritic spines are absent or their structure is grossly distorted
in the brains of individuals suffering from a variety of neurological
diseases, including developmental disorders that lead to mental
retardation such as Down’s syndrome, inherited metabolic dis-
eases, fetal alcohol syndrome, and fragile X syndrome (Comery et
al., 1997; Kamei et al., 1992; Hinton et al., 1991; Huttenlocher,
1991; Ferrer and Gullotta, 1990; Takashima et al., 1981, 1989;
Galofre et al., 1987; Becker et al., 1986; Suetsugu and Mehraein,
1980; Marin-Padilla, 1972, 1976; Purpura, 1974, 1975). One
common feature in these developmental conditions is a failure to
convert from filopodia to dendritic spines, leaving the adult den-
drites in an immature state. On the other extreme later in life,
dendritic spines are lost or distorted after seizures, strokes, demen-
tia, brain tumors, and chronic alcoholism (Jiang et al., 1998; Be-
lichenko and Dahlstrom, 1995; Multani et al., 1994; Ferrer et al.,
1991; Catala et al., 1988; Spacek, 1987; Scheibel et al., 1974).

These pathological differences amplify the important role for mat-
uration of dendritic spine morphology in normal brain function.
Spine loss and other dendritic abnormalities in epilepsy are pre-
sented in detail in this issue by Swann et al. Synaptic modifications
due to transient ischemia are discussed by Martone et al. (this
issue).

One explanation for such neuropathology is that dendritic
spines may protect neurons from excitotoxicity by isolating ele-
vated calcium to the vicinity of the synapse, where it is needed for
signal transduction. Ion exchangers, smooth endoplasmic reticu-
lum, and cytoplasmic buffers could modulate calcium levels in the
spines, thereby protecting the neuron. When seizures or other
excessive activation overcomes the calcium-buffering capacity of a
spine, it may retract with subsequent loss of spines and synaptic
function (Segal et al., 2000; Segal, 1995).

CONCLUSIONS

Dendritic spines come in a wide diversity of shapes and correspond-
ing molecular compositions, leading to the hypothesis that different
spines serve different functions. Our interpretation of conflicting data
in the literature regarding spine formation and plasticity is that the
developmental stage of a neuron interacts with the capacity for plas-
ticity under a variety of conditions, such as level of synaptic activation.
Recent evidence suggests that filopodial formation and retraction are
responsive to synaptic activity. Early during development, the emer-
gence of new dendritic spines seems to be facilitated by long-term

FIGURE 5. Spine plasticity in the mature brain. Dendritic spines and their synapses are (a)
stable or (b) change their frequency based on the level of activation within the neuropil. b: Reduced
synaptic activation leads to new spines (lower arrowhead) and/or filopodia (upper arrowhead), and
more synapses on multiple synapse boutons (asterisks).
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potentiation. In contrast, dendritic spines proliferate on mature neu-
rons, when synaptic activity is reduced or blocked. Potentiation may
selectively preserve those spines with strengthened synapses, while ex-
cessive activation eliminates mature spines. With regard to future re-
search on dendritic spines, further studies are needed to establish for
how long newly formed dendritic spines and their synapses remain
structurally intact before they are incorporated into a functional net-
work or eliminated.
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